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Some Notations

Propositional language: L

Atomic formulas (of L): p,q, r (primed or indexed)

Compound formulas (of L): ψ,ϕ, φ (primed or indexed)

Sets of formulas (of L): S, T (primed or indexed)

Finite sets of formula (of L): Γ,∆ (primed or indexed)

The set of atoms in S: Atoms(S)
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What is a (propositional) Logic?

A (Tarskian) consequence relation ` for a language L:

Reflexivity: ψ ` ψ.
Monotonicity: if S ` ψ and S ⊆ S ′, then S ′ ` ψ.
Transitivity: if S ` ψ and S ′, ψ ` ϕ then S,S ′ ` ϕ.

A consequence relation ` is called:

Structural: if S ` ψ then θ(S) ` θ(ψ) for every L-substitution θ.
Non-trivial: S 6` ψ for some S 6= ∅.
Finitary: if S ` ψ then Γ ` ψ for some finite Γ ⊆ S.

A (propositional) logic is a pair L = 〈L,`〉, where
L is a propositional language, and
` is a structural, non-trivial and finitary consequence relation for L.

Note: In this module we assume monotonic reasoning.
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Basic Connectives of Propositional Languages

Let L = 〈L,`〉 be a propositional logic.

∧ is a conjunction for L if S ` ψ ∧ ϕ iff S ` ψ and S ` ϕ.

(Equivalently, S, ψ ∧ φ ` τ ⇔ S, ψ, φ ` τ )

∨ is a disjunction for L if S, ψ ∨ ϕ ` σ iff S, ψ ` σ and S, ϕ ` σ.

(Equivalently, if ` is multi-conclusioned, S ` ψ ∨ φ ⇔ S ` ψ, φ)

⊃ is an implication for L if S, ϕ ` ψ iff S ` ϕ ⊃ ψ.

(Inferences to theoremhood: ψ1, . . . , ψn ` φ ⇔ ` ψ1 ⊃ (ψ2 . . . ⊃ (ψn ⊃ φ))

L is semi-normal if it has (at least) one of these connectives.

L is normal if it has all the three connectives.
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Multi-Valued Matrices and Their Logics

The most standard way of defining logics is by matrices.

A (multi-valued) matrix for a language L is a tripleM = 〈V,D,O〉:
V: the set of truth values,

D ⊂ V: the designated elements of V,

O: the interpretations (the ‘truth tables’) of the connectives
(an n-ary function �̃M : Vn → V for every n-ary connective � of L).

The induced semantics:

AnM-valuation a function ν : WFF(L)→ V such that
ν(�(ψ1, . . . , ψn)) = �̃M(ν(ψ1), . . . , ν(ψn)) for every connective �.

TheM-models of a formulas ψ: modM(ψ) = {ν | ν(ψ) ∈ D}.

TheM-models of a set Γ: modM(S) =
⋂
ψ∈S modM(ψ).
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Multi-Valued Matrices and Their Logics

M = 〈V,D,O〉 – a matrix for L. The induced logic LM = 〈L,`M〉:

S `M ψ iff modM(S) ⊆ modM(ψ).

Proposition (Shoesmith & Smiley, 1971)
For every propositional language L and every finite matrixM (for L),
LM = 〈L,`M〉 is a propositional logic.

D.J.Shoesmith and T.J. Smiley. Deducibility and many-valuedness. Journal of Symbolic Logic 36, pp.610–622, 1971
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Semantic Definitions of the Basic Connectives

M = 〈V,D,O〉 – a matrix for L.

∧ in L is anM-conjunction: ∀a,b ∈ V, a ∧̃ b ∈ D iff a ∈ D and b ∈ D.

∨ in L is anM-disjunction: ∀a,b ∈ V, a ∨̃ b ∈ D iff a ∈ D or b ∈ D.

⊃ in L is anM-implication: ∀a,b ∈ V, a ⊃̃ b ∈ D iff a 6∈ D or b ∈ D.

AnM-conjunction [M-disjunction,M-implication] is also a conjunction
[disjunction, implication] for LM.

IfM has anM-conjunction, or anM-disjunction, or anM-implication,
then LM is semi-normal. IfM has all of them then LM is normal.
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Examples

Classical Logic

CL = 〈{t , f}, {t}, {∨̃, ∧̃, ¬̃}〉

∨̃ t f
t t t
f t f

∧̃ t f
t t f
f f f

¬̃
t f
f t

Some Properties:

Not (pre-)paracomplete:
[LEM]: if S, ψ `CL ϕ and S,¬ψ `CL ϕ then S `CL ϕ

(Alternatively, `CL ψ ∨ ¬ψ]).

Not (pre-)paraconsistent: ψ,¬ψ `CL ϕ.
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Examples

Kleene’s Logic

KL = 〈{t , f ,⊥}, {t}, {∨̃, ∧̃, ¬̃}〉

∨̃ t f ⊥
t t t t
f t f ⊥
⊥ t ⊥ ⊥

∧̃ t f ⊥
t t f ⊥
f f f f
⊥ ⊥ f ⊥

¬̃
t f
f t
⊥ ⊥

Some Properties:

(pre-)paracomplete:
S, ψ `KL ϕ and S,¬ψ `KL ϕ does not imply that S `KL ϕ
[ 6`KL ψ ∨ ¬ψ]

Not (pre-)paraconsistent: ψ,¬ψ `KL ϕ.

S. C. Kleene. Introduction to Metamathematics. Van Nostrand, 1950.
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Examples

Asenjo-Priest’s Logic

LP = 〈{t , f ,>}, {t ,>}, {∨̃, ∧̃, ¬̃}〉

∨̃ t f >
t t t t
f t f >
> t > >

∧̃ t f >
t t f >
f f f f
> > f >

¬̃
t f
f t
> >

Some Properties:

Not (pre-)paracomplete:
if S, ψ `LP ϕ and S,¬ψ `LP ϕ then S `LP ϕ [ `LP ψ ∨ ¬ψ ].

(pre-)paraconsistent: ψ,¬ψ 6`LP ϕ.

F. G. Asenjo. A calculus of antinomies. Notre Dame Journal of Formal Logic, 7:103–106, 1966.

G. Priest. Logic of paradox . Journal of Philosophical Logic, 8:219–241, 1979.

G. Priest. Reasoning about truth. Artificial Intelligence, 39:231–244, 1989.
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Examples

Dunn-Belnap’s Logic
FDE = 〈{t , f ,>,⊥}, {t ,>}, {∨̃, ∧̃, ¬̃}〉

∨̃ t f > ⊥
t t t t t
f t f > ⊥
> t > > t
⊥ t ⊥ t ⊥

∧̃ t f > ⊥
t t f > ⊥
f f f f f
> > f > f
⊥ ⊥ f f ⊥

¬̃
t f
f t
> >
⊥ ⊥

Some Properties:
(pre-)paracomplete:
S, ψ `FDE ϕ and S,¬ψ `FDE ϕ does not imply that S `FDE ϕ
[ 6`FDE ψ ∨ ¬ψ]
(pre-)paraconsistent: ψ,¬ψ 6`FDE ϕ.

J. M. Dunn. Intuitive semantics for first-degree entailments and ‘coupled trees’ . Philosophical Studies, 29:149–168, 1976.

N. D. Belnap. How a computer should think . Contemporary Aspects of Philosophy, pages 30–56, Oriel Press, 1977.

N. D. Belnap. A useful four-valued logic . Modern Uses of Multiple-Valued Logics, pages 7–37, Reidel, 1977.
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Inconsistency Handling

Coherent Approaches

o Consistency restoration in the presence of contradictions

o Information is revised (belief revision, DB repair, . . .)

Paraconsistent Approaches

o Reasoning with inconsistent premises

o No information loss

o Inference should not be trivialized (no data explosion)
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Paraconsistemt Logics
(Vesiliev, Łukasiewicz, Jaśkowski, da-Costa, Nelson, Anderson, Belnap, . . . )

The principle of explosion (‘ex contradictione sequitur quodlibet’):
If one claims something is both true and not true, one can
logically derive any conclusion.

ψ,¬ψ ` φ

However, by this principle,

Any inconsistent theory becomes trivial, and so
No sensible reasoning can take place in the presence of
contradictions.

Rejecting this principle means the rejection at least one of:

Disjunction Introduction: from infer ψ infer ψ ∨ φ
The Disjunctive Syllogism: from ¬ψ and ψ ∨ φ infer φ
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(Vesiliev, Łukasiewicz, Jaśkowski, da-Costa, Nelson, Anderson, Belnap, . . . )

The principle of explosion (‘ex contradictione sequitur quodlibet’):
If one claims something is both true and not true, one can
logically derive any conclusion.

ψ,¬ψ ` φ

However, by this principle,

Any inconsistent theory becomes trivial, and so
No sensible reasoning can take place in the presence of
contradictions.

Rejecting this principle means the rejection at least one of:

Disjunction Introduction: from infer ψ infer ψ ∨ φ
The Disjunctive Syllogism: from ¬ψ and ψ ∨ φ infer φ

16 / 52



Paraconsistemt Logics
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Paraconsistemt Logics
(Vesiliev, Łukasiewicz, Jaśkowski, da-Costa, Nelson, Anderson, Belnap, . . . )

Paraconsistent logics do allow non-trivial inconsistent theories:
〈L,`〉 is pre ¬-paraconsistent if there are ψ, φ such that ψ,¬ψ 6` φ.
(By structurality, it is enough that there are atoms p,q s.t. p,¬p 6` q)

Paraconsistency is characterized by a ‘negation connective’. But there
is no general agreement about the properties of such a connective.
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What is Negation?

Intuition (a minimal condition): A logic with a negation connective
should not admit any entailment that is excluded by classical logic.

¬-containment in classical logic.
The logic does not allow negation rules that are excluded by CL.

CL = 〈{t , f}, {t}, {¬̃, . . .}〉
L = 〈L,`〉 is ¬-contained in classical logic if: Γ ` ψ ⇒ Γ `CL ψ

¬-coherence with classical logic.
The logic has a semi-normal fragment which is ¬-contained in CL.

¬ is a negation for L ¬-coherent with classical logic.

Note: If ¬ is a negation for L = 〈L,`〉, then for any atom p it holds that
p 6` ¬p and ¬p 6` p.
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Paraconsistemt Logics
(Vesiliev, Łukasiewicz, Jaśkowski, da-Costa, Nelson, Anderson, Belnap, . . . )

Definition
A logic L is ¬-paraconsistent if it is pre-paraconsistent (p,¬p 6` q) and
¬ is a negation for L.

Note: Three inherent conditions in the definition of paraconsistency:
Pre-paraconsistency (to avoid explosion)
A proper behavior of the underlying unary connective ¬
Minimal expressive power (semi-normality)
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Maximal Paraconsistency

The two requirements from a paraconsistent logic
(pre-paraconsistency and ¬-coherence with CL) are usually not
enough.

A useful paraconsistent logic should be maximal (da-Costa, 1974).

Intuition: By trying to further extend a paraconsistent logic (without
changing the language), paraconsistency is lost.

A logic L = 〈L,`〉 is maximally paraconsistent , if it is paraconsistent,
and every logic L′ = 〈L,
〉 that properly extends L (that is, ` ( 
)
is not paraconsistemt.

N. C. A. da Costa. On the theory of inconsistent formal systems. Notre Dame Journal of Formal Logic, 15:497–510, 1974.
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Maximality Relative to Classical Logic

Maximal paraconsistenct is an absolute criterion. Another way of
interpreting maximality is relative, with respect to a reference logic.
Classical logic is a natural candidate for this.

Intuition: A useful paraconsistent logic should retain as much of
classical logic as possible, while still allowing non-trivial inconsistent
theories.

A logic L = 〈L,`〉 is maximal relative to classical logic, if:

L is ¬-contained in classical logic
(Γ ` ψ ⇒ Γ `CL ψ, where CL = 〈{t , f}, {t}, {¬̃, . . .}〉)

Let ψ be a CL-tautology not provable in L. Then by adding a ψ to
L as a new axiom schema, all the CL-tautologies become
provable in L.
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Three-Valued Paraconsistent Logics

One of the oldest and best known approaches to paraconsistency
The simplest multivalued framework for paraconsistent reasoning.

Indeed:
Every paraconsistent matrix which is ¬-contained in classical logic
has at least two designated elements.
No two-valued matrix which is ¬-contained in classical logic can
be paraconsistent.

Lemma: LetM = 〈V,D,O〉 be a matrix for a language with ¬.
• If LM is ¬-contained in CL, there is t ∈ V s.t. t ∈ D and ¬̃t /∈ D.
• M is pre-paraconsistent iff there is > ∈ V s.t. > ∈ D and ¬̃> ∈ D.

Proof: Since p 6`CL ¬p, also p 6`M ¬p, and so there is some t ∈ D,
such that ¬̃t /∈ D. SinceM is pre-paraconsistent, p,¬p 6`M q, and so
there is some > ∈ D such that ¬̃> ∈ D. 2
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Three-Valued Paraconsistent Logics (Cot’d.)

Proposition
LetM be a 3-valued matrix such that LM is paraconsistent.
ThenM is isomorphic to a matrix 〈V,D,O〉 in which
V = {t , f ,>}, D = {t ,>}, and ¬̃t = f , ¬̃f = t , ¬̃> ∈ D.

Two possible 3-valued negation connectives:
Sette’s negation: ¬̃t = f , ¬̃f = t , ¬̃> = t
Kleene’s negation: ¬̃t = f , ¬̃f = t , ¬̃> = >

Proposition (maximality of 3-valued paraconsistent logics)
Every 3-valued (semi-normal) paraconsistent logic that is ¬-contained
in CL, is maximal in both senses.?

? O.Arieli, A.Avron. Three-valued paraconsistent propositional logics. New Directions in Paraconsistent Logics, pp.91-129, 2015.
?? In the 3-valued case maximal consistency of normal paraconsistent logic implies maximality relative to CL.
??? Semi-normality is important here: a 3-valued logic with only Kleene’s negation is not maximally paraconsistent.
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Notable 3-valued Paraconsistent Logics

Sette’s Logic

P1 = 〈{t , f ,>}, {t ,>}, {∨̃, ∧̃, ⊃̃, ¬̃}〉

∨̃ t f >
t t t t
f t f t
> t t t

∧̃ t f >
t t f t
f f f f
> t f t

⊃̃ t f >
t t f t
f t t t
> t f t

¬̃
t f
f t
> t

Pros:
Paraconsistent and normal
Maximal in both senses

Cons:

¬ is not right involutive: p 6`P1 ¬¬p
Some unintuitive entailments: ¬p 6`P1 ¬(p ∧ q)
Explosive w.r.t. negative data: ¬p,¬¬p `P1 q

A. M. Sette. On propositional calculus P1. Mathematica Japonica, 16:173–180, 1973.
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Notable 3-valued Paraconsistent Logics

Asenjo-Priest’s Logic
LP = 〈{t , f ,>}, {t ,>}, {∨̃, ∧̃, ¬̃}〉

∨̃ t f >
t t t t
f t f >
> t > >

∧̃ t f >
t t f >
f f f f
> > f >

¬̃
t f
f t
> >

Like (strong) Kleene’s logic, but with a designated middle element
Paraconsistent
Maximal in both senses
Has the same tautologies as those of CL: `LP ψ iff `CL ψ

Semi-normal but not normal (an implication is not definable)

F. G. Asenjo. A calculus of antinomies. Notre Dame Journal of Formal Logic, 7:103–106, 1966.

G. Priest. Logic of paradox . Journal of Philosophical Logic, 8:219–241, 1979.

G. Priest. Reasoning about truth. Artificial Intelligence, 39:231–244, 1989.
27 / 52



Notable 3-valued Paraconsistent Logics

Asenjo-Priest’s Logic
LP = 〈{t , f ,>}, {t ,>}, {∨̃, ∧̃, ¬̃}〉

∨̃ t f >
t t t t
f t f >
> t > >

∧̃ t f >
t t f >
f f f f
> > f >

¬̃
t f
f t
> >

Like (strong) Kleene’s logic, but with a designated middle element

Paraconsistent
Maximal in both senses
Has the same tautologies as those of CL: `LP ψ iff `CL ψ

Semi-normal but not normal (an implication is not definable)

F. G. Asenjo. A calculus of antinomies. Notre Dame Journal of Formal Logic, 7:103–106, 1966.

G. Priest. Logic of paradox . Journal of Philosophical Logic, 8:219–241, 1979.

G. Priest. Reasoning about truth. Artificial Intelligence, 39:231–244, 1989.
27 / 52



Notable 3-valued Paraconsistent Logics

Asenjo-Priest’s Logic
LP = 〈{t , f ,>}, {t ,>}, {∨̃, ∧̃, ¬̃}〉

∨̃ t f >
t t t t
f t f >
> t > >

∧̃ t f >
t t f >
f f f f
> > f >

¬̃
t f
f t
> >

Like (strong) Kleene’s logic, but with a designated middle element
Paraconsistent

Maximal in both senses
Has the same tautologies as those of CL: `LP ψ iff `CL ψ

Semi-normal but not normal (an implication is not definable)

F. G. Asenjo. A calculus of antinomies. Notre Dame Journal of Formal Logic, 7:103–106, 1966.

G. Priest. Logic of paradox . Journal of Philosophical Logic, 8:219–241, 1979.

G. Priest. Reasoning about truth. Artificial Intelligence, 39:231–244, 1989.
27 / 52



Notable 3-valued Paraconsistent Logics

Asenjo-Priest’s Logic
LP = 〈{t , f ,>}, {t ,>}, {∨̃, ∧̃, ¬̃}〉

∨̃ t f >
t t t t
f t f >
> t > >

∧̃ t f >
t t f >
f f f f
> > f >

¬̃
t f
f t
> >

Like (strong) Kleene’s logic, but with a designated middle element
Paraconsistent
Maximal in both senses

Has the same tautologies as those of CL: `LP ψ iff `CL ψ

Semi-normal but not normal (an implication is not definable)

F. G. Asenjo. A calculus of antinomies. Notre Dame Journal of Formal Logic, 7:103–106, 1966.

G. Priest. Logic of paradox . Journal of Philosophical Logic, 8:219–241, 1979.

G. Priest. Reasoning about truth. Artificial Intelligence, 39:231–244, 1989.
27 / 52



Notable 3-valued Paraconsistent Logics

Asenjo-Priest’s Logic
LP = 〈{t , f ,>}, {t ,>}, {∨̃, ∧̃, ¬̃}〉

∨̃ t f >
t t t t
f t f >
> t > >

∧̃ t f >
t t f >
f f f f
> > f >

¬̃
t f
f t
> >

Like (strong) Kleene’s logic, but with a designated middle element
Paraconsistent
Maximal in both senses
Has the same tautologies as those of CL: `LP ψ iff `CL ψ

Semi-normal but not normal (an implication is not definable)

F. G. Asenjo. A calculus of antinomies. Notre Dame Journal of Formal Logic, 7:103–106, 1966.

G. Priest. Logic of paradox . Journal of Philosophical Logic, 8:219–241, 1979.

G. Priest. Reasoning about truth. Artificial Intelligence, 39:231–244, 1989.
27 / 52



Notable 3-valued Paraconsistent Logics

Asenjo-Priest’s Logic
LP = 〈{t , f ,>}, {t ,>}, {∨̃, ∧̃, ¬̃}〉

∨̃ t f >
t t t t
f t f >
> t > >

∧̃ t f >
t t f >
f f f f
> > f >

¬̃
t f
f t
> >

Like (strong) Kleene’s logic, but with a designated middle element
Paraconsistent
Maximal in both senses
Has the same tautologies as those of CL: `LP ψ iff `CL ψ

Semi-normal but not normal (an implication is not definable)

F. G. Asenjo. A calculus of antinomies. Notre Dame Journal of Formal Logic, 7:103–106, 1966.

G. Priest. Logic of paradox . Journal of Philosophical Logic, 8:219–241, 1979.

G. Priest. Reasoning about truth. Artificial Intelligence, 39:231–244, 1989.
27 / 52



Notable 3-valued Paraconsistent Logics

Extensions of LP by Propositional Constants

LPB – extension of LP to {¬,∨,∧,B} (where ν(B) = >)
LPF – extension of LP to {¬,∨,∧,F} (where ν(F) = f )
LPF,B – extension of LP to {¬,∨,∧,F,B}

LPB and LPF,B are ¬-coherent with CL
LP and LPF are ¬-contained in CL
LP and LPF have the same valid formulas as in CL
all the extensions are still not normal (implications are not
definable in them)
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Notable 3-valued Paraconsistent Logics

PAC (RM3) – Extension of LP by Implication
(Avron, Batens, da Costa, D’Ottaviano)

PAC = 〈{t , f ,>}, {t ,>}, {∨̃, ∧̃, ⊃̃, ¬̃}〉

a ⊃̃ b =

{
b a 6= f ,
t a = f .

This is an implication (S, ϕ ` ψ iff S ` ϕ ⊃ ψ) for each 3-valued matrix:
with D = {t} (Słupecki) or with D = {t ,>} (da Costa & D’Ottaviano).

Paraconsistent
Maximal in both senses
Normal

A. Avron. On an implication connective of RM. Notre Dame Journal of Formal Logic, 27:201–209, 1986.

D. Batens. Paraconsistent extensional propositional logics. Logique et Analyse, 90–91:195–234, 1980.

I. D’Ottaviano. The completeness and compactness of a three-valued first-order logic. Revista Colombiana de Matematicas,
XIX(1–2):31–42, 1985.
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Notable 3-valued Paraconsistent Logics

Extensions of PAC by Propositional Constants

J3 = PACF = 〈{t , f ,>}, {t ,>}, {∨̃, ∧̃, ⊃̃, ¬̃,F}〉

PACB = 〈{t , f ,>}, {t ,>}, {∨̃, ∧̃, ⊃̃, ¬̃,B}〉

JB
3 = PACF,B = 〈{t , f ,>}, {t ,>}, {∨̃, ∧̃, ⊃̃, ¬̃,F,B}〉

PAC, J3,PACB and JB
3 are all normal

PAC, J3,PACB and JB
3 are paraconsistent logic

PAC and J3 are maximal in both senses
(This is false for PACB and JB

3 , which are not ¬-contained in CL)
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Notable 3-valued Paraconsistent Logics

Furthermore:

JB
3 is the strongest 3-valued paraconsistent logic

(every 3-valued paraconsistent logic can be embedded in it).?

J3 is the strongest 3-valued paraconsistent logic which is
¬-contained in CL.

PACB is the strongest 3-valued non-exploding paraconsistent
logic.??

PAC is the strongest 3-valued paraconsistent logic which is both
¬-contained in CL and non-exploding.

? Sette’s negation is not represented in PACB, but it is represented in J3.
?? That is: For every S such that Atoms(S) 6= Atoms(L), there is a formula ψ such that S 6`PACB ψ.
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Tweety Dilemma

S =



bird(Tweety) 7→ fly(Tweety)

penguin(Tweety) ⊃ bird(Tweety)

penguin(Tweety) ⊃ ¬fly(Tweety)

bird(Tweety)

penguin(Tweety)



S has six PAC-models:

bird fly penguin
ν1 > > >
ν2 > > t
ν3 > f >

bird fly penguin
ν4 > f t
ν5 t > >
ν6 t > t

Thus, S is classically inconsistent, yet:
S `PAC bird(Tweety), S `PAC penguin(Tweety), S `PAC ¬fly(Tweety),
while the negated assertions cannot be concluded.
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ν3 > f >

bird fly penguin
ν4 > f t
ν5 t > >
ν6 t > t

Thus, S is classically inconsistent, yet:
S `PAC bird(Tweety), S `PAC penguin(Tweety), S `PAC ¬fly(Tweety),
while the negated assertions cannot be concluded.

32 / 52



Tweety Dilemma

S =



bird(Tweety) 7→ fly(Tweety)

penguin(Tweety) ⊃ bird(Tweety)

penguin(Tweety) ⊃ ¬fly(Tweety)

bird(Tweety)

penguin(Tweety)


S has six PAC-models:

bird fly penguin
ν1 > > >
ν2 > > t
ν3 > f >

bird fly penguin
ν4 > f t
ν5 t > >
ν6 t > t

Thus, S is classically inconsistent, yet:
S `PAC bird(Tweety), S `PAC penguin(Tweety), S `PAC ¬fly(Tweety),
while the negated assertions cannot be concluded.

32 / 52



Tweety Dilemma (Cont’d.)

Inconsistency is ‘localized’:

S ′ = S
⋃ {

elephant(Fred) ⊃ ¬fly(Fred)

elephant(Fred)

}

S ′ `PAC bird(Tweety) S ′ 6`PAC ¬bird(Tweety)

S ′ `PAC penguin(Tweety) S ′ 6`PAC ¬penguin(Tweety)

S ′ `PAC ¬fly(Tweety) S ′ 6`PAC fly(Tweety)

S ′ `PAC elephant(Fred) S ′ 6`PAC ¬elephant(Fred)

S ′ `PAC ¬fly(Fred) S ′ 6`PAC fly(Fred)
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Notable 3-valued Paraconsistent Logics

Logics of Formal Inconsistency (LFIs)
(Carnielli, Coniglio, Marcos)

LFI = 〈{t , f ,>}, {t ,>}, {∨̃, ∧̃, ⊃̃, ◦̃, ¬̃}〉

∧̃ t f >
t t f t o >
f f f f
> t o > f t o >

∨̃ t f >
t t t t o >
f t f t o >
> t o > t o > t o >

⊃̃ t f >
t t f t o >
f t t t o >
> t o > f t o >

¬̃
t f
f t
> t o >

◦̃
t t
f t
> f

2 possible interpretations for ¬, 23 for ∧, 25 for ∨, and 24 for ⊃.
Altogether 213 (8Kb) distinct (paraconsistent and maximal) logics.

W. A. Carnielli, M. E. Coniglio, and J. Marcos. Logics of formal inconsistency . Handbook of Philosophical Logic 14, pp.1–95, 2007.
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Notable 3-valued Paraconsistent Logics

Logics of Formal Inconsistency (LFIs)

There are the 213 (8Kb) three-valued paraconsistent matricesM
for the language of {¬,∧,∨,⊃} such that LM is ¬-contained in
classical logic and normal, with the connectives ∧, ∨ and ⊃ being
conjunction, disjunction and implication (respectively).

The logics induced by the matrices in 8Kb are all distinct: different
matrices in 8Kb induce different logics.

All the logics are paraconsistent and maximal in both senses.

All of the logics are embedded in J3, which may defined as a logic
in the language of {¬,∧,∨,⊃, ◦} (i.e., where ◦ replaces F).
Indeed, this makes no difference since:

◦̃(a) = (a ∧̃ ¬̃a) ⊃̃ f , and
f = ◦̃(a) ∧̃ ¬̃◦̃(a).

This logic is also known as LFI1 (Carnielli, Coniglio, Marcos).
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Many Other 3-valued Paraconsistent Logics...
This survey is by no means exhaustive. Other known logics include:

Special cases of LFIs:

The logic SRMI, incorporating Sobociński’s implication:

a→̃b =

 > if a = b = >,
f if a >t b (where t >t > >t f ),
t otherwise.

B. Sobociński. Axiomatization of a partial system of three-value calculus
of propositions. Journal of Computing Systems 1, pp.23–55, 1952

Avron & Béziau logic PE3.
A. Avron, J. Y. Béziau. Self-extensional three-valued paraconsistent logics
have no implication. Logic Journal of the IGPL 25, pp.183–194, 2017

Paraconsistent 3-valued logics with a single designated value.

M. Osorio, J. L. Carballido. Brief study of G′
3 logic. Applied Non-Classical

Logics 18, pp.475-499, 2008.

G. Robles, J. M. Mendéz. A paraconsistent 3-valued logic related to Gödel
logic G3. Logic Journal of the IGPL 22, pp.515–538, 2014.
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Plan of Module 1

1 Preliminaries; Multi-Valued Logics

2 Negation and Paraconsistency

3 Maximal Properties of Paraconsistent Logics

Maximal Paraconsistency

Maximality Relative to CL

4 The Simplest Paraconsistent Multi-Valued Logics
(3-Valued Paraconsistent Logics)

5 Combining Paraconsistency and Paracompleteness
(4-Valued Paradefinite Logics)
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7 Other Approaches to Paraconsistency
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Combining Paraconsistency and Paracompleteness

All the 3-values paraconsistent logic are complete:

if S, ψ ` ϕ and S,¬ψ ` ϕ then S ` ϕ.

We would like to consider paraconsistent logics that are also able to
handle incomplete data by rejecting the law of excluded middle,
according to which any proposition is either ‘true’ (i.e., known) or its
negation is ‘true’.

Definition
A logic L is called ¬-paracomplete, if ¬ is a negation for L which
is not complete for L.

Definition
A logic L is called ¬-paradefinite (‘beyond the definite’), if it is both
¬-paraconsistent and ¬-paracomplete.
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Four-Valued Paradefinite Logics

The simplest semantic framework for combining paraconsistent and
paracomplete reasoning.

Proposition
IfM = 〈V,D,O〉 is a ¬-paradefinite matrix then there are four
elements t,f ,>, and ⊥ in V such that:
(1): t ∈ D and ¬̃t 6∈ D, (2): f 6∈ D and ¬̃f ∈ D,
(3): > ∈ D and ¬̃> ∈ D, (4): ⊥ 6∈ D and ¬̃⊥ 6∈ D, (5): ¬̃t = f .

Proposition
LetM be a ¬-paradefinite four-valued matrix. ThenM is isomorphic
to a matrix 〈V,D,O〉, in which:
V = {t , f ,>,⊥}, D = {t ,>}, and
¬̃t = f , ¬̃f = t , ¬̃> ∈ {t ,>}, ¬̃⊥ ∈ {f ,⊥}.
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Negations in Four-Valued Paradefinite Logics

The last proposition leaves 4 choices for ¬.
One of them (Dunn-Belnap negation) is more natural:

Lemma: LetM be a ¬-paradefinite four-valued matrix. Then:
• If ¬ is left involutive for LM (i.e., ¬¬p `LM p) then ¬̃⊥ = ⊥.
• If ¬ is right involutive for LM (i.e., p `LM ¬¬p) then ¬̃> = >.

Proof:
¬¬p `LM p, thus ¬̃⊥ 6= f (otherwise ν(p) = ⊥ is a countermodel).
Since ¬̃⊥ ∈ {f ,⊥}, we have that ¬̃⊥ = ⊥.
p `LM ¬¬p, thus ¬̃> 6= t (otherwise ν(p) = > is a countermodel).
Since ¬̃> ∈ {t ,>}, we have that ¬̃> = >. 2
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Case Study: Dunn-Belnap Logic (FDE)

Motivation – Integration of Information Sources

A processor collects and processes information from a set of sources.
Each source may provide the processor with information about atomic
formulas. The information has the form of a truth-value in {1,0, ?}.

The processor assigns to an atom p a subset d(p) of {0,1}:
1 ∈ d(p) iff some source has assigned 1 to p
0 ∈ d(p) iff some source has assigned 0 to p

d(p) = {1} p is known to be true and not known to be false
d(p) = {0} p is known to be false and not known to be true
d(p) = {0,1} p is known to be true and known to be false
d(p) = ∅ p is not known to be true and not knwon to be false
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Dunn-Belnap Logic (Cont’d.)

The processor’s valuation is extended to {¬,∨,∧} as follows:

(db1) 0∈d(¬ϕ) iff 1∈d(ϕ)

(db2) 1∈d(¬ϕ) iff 0∈d(ϕ)

(db3) 1∈d(ϕ ∨ ψ) iff 1∈d(ϕ) or 1∈d(ψ)

(db4) 0∈d(ϕ ∨ ψ) iff 0∈d(ϕ) and 0∈d(ψ)

(db5) 1∈d(ϕ ∧ ψ) iff 1∈d(ϕ) and 1∈d(ψ)

(db6) 0∈d(ϕ ∧ ψ) iff 0∈d(ϕ) or 0∈d(ψ).

The corresponding interpretations of the connectives:

∨̃ t f > ⊥
t t t t t
f t f > ⊥
> t > > t
⊥ t ⊥ t ⊥

∧̃ t f > ⊥
t t f > ⊥
f f f f f
> > f > f
⊥ ⊥ f f ⊥

¬̃
t f
f t
> >
⊥ ⊥
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Belnap’s Bilattice FOUR

6≤t

-
≤k

t
f

t⊥ t>

tt

�
�
�
�
��

@
@
@
@
@@�

�
�
�
��

@
@
@
@
@@

FDE = 〈V,D, {¬̃, ∨̃, ∧̃}〉: Dunn-Belnap matrix for {¬,∨,∧},
where V = {t , f ,>,⊥} and D = {t ,>}.

The logic induced by FDE is semi-normal, paradefinite, and
¬-contained in CL.
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Dunn-Belnap Logic (Cont’d.)

N. D. Belnap. How a computer should think . In: Contemporary Aspects
of Philosophy, pages 30–56. G. Ryle, editor, Oriel Press, 1977.

N. D. Belnap. A useful four-valued logic. In: Modern Uses of
Multiple-Valued Logics, pages 7–37. J. M. Dunn and G. Epstein,
editors, Reidel Publishing Company, 1977.

(a) Studia Logica 105(6),
Omori & Wansing, editors,
December 2017

(b) Synthese Library 418,
Omori & Wansing, editors,
Springer, December 2019
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Expansions of FDE

• FDE is only semi-normal (no implication is definable in it)

• FDE is not maximal in either senses (LP extends it by ψ ∨ ¬ψ)

• There are no FDE-tautologies (if ∀p ∈ Atoms(ψ) ν(p) = ⊥ then ν(ψ) = ⊥)

Other Useful Connectives

AnM-implication for every paradefinite four-valued matrixM

a ⊃̃ b =

{
b if a ∈ {t ,>},
t if a ∈ {f ,⊥}.

Using the ≤k -order: − (≤k-reversing), ⊕ (≤k-lub), ⊗ (≤k-glb)

⊕̃ t f > ⊥
t t > > t
f > f > f
> > > > >
⊥ t f > ⊥

⊗̃ t f > ⊥
t t ⊥ t ⊥
f ⊥ f f ⊥
> t f > ⊥
⊥ ⊥ ⊥ ⊥ ⊥

−̃
t t
f f
> ⊥
⊥ >

Constants: T (truth), F (falsity), B (both) and N (neither).
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A Maximal Expansion of FDE

The Full Language and its Matrix

LAll = {¬,∨,−,∧,⊕,⊗,⊃,F,T,B,N} – the full language.
4All – the expansion of FDE to LAll .

Not all the connectives in LAll are really necessary. For instance,
the following languages are functionally complete for {t , f ,>,⊥}:1

The language of {¬,∨,∧,⊃,B,N}
The language of {¬,∨,∧,⊃,⊕,⊗,F}

The logic that is induced by 4All is:
normal
paradefinite
maximally paraconsistent

1

Every function g :{t , f ,>,⊥}n → {t , f ,>,⊥} is representable in the language.
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The language of {¬,∨,∧,⊃,⊕,⊗,F}

The logic that is induced by 4All is:
normal
paradefinite
maximally paraconsistent

1Every function g :{t , f ,>,⊥}n → {t , f ,>,⊥} is representable in the language.
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A Maximal Monotonic Expansion

(Following Belnap’s intuition on the sources integration system)

LMon = {¬,∨,∧,B,N}
4Mon – the expansion of FDE to LMon.

Expressive power: A function g : {t , f ,>,⊥}n → {t , f ,>,⊥} is
representable in LMon iff it is ≤k-monotonic (i.e., if ∀i ai ≤k bi then
g(a1, . . . ,an) ≤k g(b1, . . . ,bn)).

Thus: the logic that is induced by 4Mon contains every logic that
is induced by a 4-valued paradefinite matrix that employs only
≤k-monotonic functions.

The logic that is induced by 4Mon is:
semi-normal
paradefinite
maximally paraconsistent
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A Maximal Classical Expansion

LCC = {¬,−,∨,∧,⊃}
4CC – the expansion of FDE to LCC .

Expressive power: g :{t , f ,>,⊥}n→{t , f ,>,⊥} is representable
in LCC iff it is {t , f}-closed. (if ∀p ∈ Atoms(ψ) ν(p) ∈ {t, f} then ν(ψ) ∈ {t, f})

Thus: the logic that is induced by 4CC contains every logic that is
induced by a 4-valued paradefinite matrix and is ¬-contained in CL.

The logic that is induced by 4CC is:
normal
paradefinite
¬-contained in CL
maximal in both senses
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A General Construction

Proposition
LetM = 〈V,D,O〉 be an n-valued matrix (n > 3) for a language L
containing two unary connectives ¬ and �, and a binary connective ⊃.

1 Suppose that the following conditions hold inM:
V = {t , f ,>,⊥1, . . . ,⊥n−3} and D = {t ,>};
¬̃t = f , ¬̃f = t , and ¬̃x = x otherwise;
�̃t = f , �̃f = t , �̃> = ⊥1, �̃⊥i = ⊥i+1 for i < n − 3, and �̃⊥n−3 = >;
⊃̃ is defined by a ⊃̃ b = t if a 6∈ D, and a ⊃̃ b = b otherwise.

Then LM is a normal, paradefinite, and maximally paraconsistent
n-valued logic, which is not equivalent to any m-valued logic with
m < n.

2 Suppose that, in addition to the conditions above, every other
connective ofM is {t , f}-closed. Then LM is maximal in both
senses.
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Different Approaches to Paraconsistency

Multi-Valued Truth Functionality (algebraic methods, matrices)

Possible Worlds (modalities, intuitionism)

Relevance (variable sharing)

Non-Determinism (relaxation of truth functionality, Nmatrices)
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