
Argumentation-based Approaches to Paraconsistency
SPLogIC, CLE Unicamp, Feb. 2023 (Ofer Arieli)

Module 2

Logical Argumentation

1 / 75

Handbooks on Argumentation Theory

(a) Rahwan, Simari
Springer 2008

(b) Baroni, Gabbay,
Giacomin, van der Torre
College Publications,
2018

(c) Gabbay, Giacomin,
Simari, Thimm
College Publications,
2021

(There are others. These are the most relevant to this presentation)

2 / 75

Plan of Module 2

1 Motivation and Introduction

2 Abstract Argumentation Frameworks

Basic Definitions, Semantics

The Induced Entailments

Paraconsistent Semantics

3 Logical (Deductive) Argumentation Frameworks

4 Some Instantiations

Sequent-based Argumentation

ASPIC Systems

Assumption-based Argumentation

3 / 75

Motivation and Introduction

All the paraconsistent formalisms considered in Module 1 are defined
by logics. In particular, they are monotonic.

Deductive reasoning should be combined with defeasible reasoning.

“Human reasoners do not operate with arguments and infer-
ences which allow for absolutely no counterexamples: instead,
they typically operate with arguments and inferences whose
conclusion is true, or at least highly plausible, in cases where
the premises are true and nothing abnormal is going on. The
requirement that the conclusion be true in absolutely all situ-
ations where the premises are true (including highly unlikely
situations) is, for most practical purposes, overkill.”
(Catharina Dutilh Novaes, The ‘built-in opponent’-conception of logic and deduction, 2012)

4 / 75

Motivation and Introduction

All the paraconsistent formalisms considered in Module 1 are defined
by logics. In particular, they are monotonic.

Deductive reasoning should be combined with defeasible reasoning.

“Human reasoners do not operate with arguments and infer-
ences which allow for absolutely no counterexamples: instead,
they typically operate with arguments and inferences whose
conclusion is true, or at least highly plausible, in cases where
the premises are true and nothing abnormal is going on. The
requirement that the conclusion be true in absolutely all situ-
ations where the premises are true (including highly unlikely
situations) is, for most practical purposes, overkill.”
(Catharina Dutilh Novaes, The ‘built-in opponent’-conception of logic and deduction, 2012)

4 / 75

Motivation and Introduction

All the paraconsistent formalisms considered in Module 1 are defined
by logics. In particular, they are monotonic.

Deductive reasoning should be combined with defeasible reasoning.

“Human reasoners do not operate with arguments and infer-
ences which allow for absolutely no counterexamples: instead,
they typically operate with arguments and inferences whose
conclusion is true, or at least highly plausible, in cases where
the premises are true and nothing abnormal is going on. The
requirement that the conclusion be true in absolutely all situ-
ations where the premises are true (including highly unlikely
situations) is, for most practical purposes, overkill.”
(Catharina Dutilh Novaes, The ‘built-in opponent’-conception of logic and deduction, 2012)

4 / 75

Argumentation Theory

Argumentation theory is the interdisciplinary study of how conclusions
can be reached through logical reasoning [...]. It includes the arts and
sciences of civil debate, dialogue, conversation, and persuasion. It
studies rules of inference, logic, and procedural rules in both artificial
and real world settings. (Wikipedia)

Scope of this course:
Argumentation has been studied since Antiquity.
We shall hardly discuss here historical or philosophical issues, but:
Describe formal and computational argumentative methods, used
in particular in CS and AI (for paraconsistent, non-monotonic
reasoning).

5 / 75

Argumentation Theory

Argumentation theory is the interdisciplinary study of how conclusions
can be reached through logical reasoning [...]. It includes the arts and
sciences of civil debate, dialogue, conversation, and persuasion. It
studies rules of inference, logic, and procedural rules in both artificial
and real world settings. (Wikipedia)

Scope of this course:
Argumentation has been studied since Antiquity.
We shall hardly discuss here historical or philosophical issues, but:
Describe formal and computational argumentative methods, used
in particular in CS and AI (for paraconsistent, non-monotonic
reasoning).

5 / 75

Why Argumentation is Useful for Us?

Combining paraconsistency and non-monotonicity.
An argumentative perspective on the logical foundations of
defeasible reasoning.

Visualization. A graph-based representation of the sources of
inconsistency/uncertainty/conflicts.

AI-related applications (argument-mining, debates & discussions,
analysis of clinical evidence in medical systems, agent-based
negotiations over the web, critical thinking support, etc.)

Handbook of Formal Argumentation, Chapter 14: Foundations of implementations for formal argumentation (Cerutti, Gaggl,
Thimm, Wallner).

6 / 75

Why Argumentation is Useful for Us?

Combining paraconsistency and non-monotonicity.
An argumentative perspective on the logical foundations of
defeasible reasoning.

Visualization. A graph-based representation of the sources of
inconsistency/uncertainty/conflicts.

AI-related applications (argument-mining, debates & discussions,
analysis of clinical evidence in medical systems, agent-based
negotiations over the web, critical thinking support, etc.)

Handbook of Formal Argumentation, Chapter 14: Foundations of implementations for formal argumentation (Cerutti, Gaggl,
Thimm, Wallner).

6 / 75

Why Argumentation is Useful for Us?

Combining paraconsistency and non-monotonicity.
An argumentative perspective on the logical foundations of
defeasible reasoning.

Visualization. A graph-based representation of the sources of
inconsistency/uncertainty/conflicts.

AI-related applications (argument-mining, debates & discussions,
analysis of clinical evidence in medical systems, agent-based
negotiations over the web, critical thinking support, etc.)

Handbook of Formal Argumentation, Chapter 14: Foundations of implementations for formal argumentation (Cerutti, Gaggl,
Thimm, Wallner).

6 / 75

ARG-Tech, Center of Argument technology,
University of Dundee (www.arg-tech.org)

7 / 75

Landmarks in Modern Argumentation Theory

Stephen E. Toulmin, The uses of argument . Cambridge university
press, 1958.

John L. Pollock, Defeasible reasoning. Cognitive Science 11,
pp. 481–518, 1987.

Phan Minh Dung, On the acceptability of arguments and its
fundamental role in nonmonotonic reasoning, logic programming
and n-person games. Artificial Intelligence 77(2), pp. 321–357,
1995.

Handbook of Formal Argumentation (volume 1), Chapters 1 & 2:
- Argumentation theory in formal and computational perspective (Van Eemeren and Verheij),
- Historical overview of formal argumentation (Prakken)

8 / 75

Toulmin Model of Reasoning

Data
The facts or evidence used
to prove or justify an argument.

[Qualifier] Conclusion
[Shows in what way and how much we can
rely on the conclusion]

The proposition making a claim on the
acceptance of the audience.

Warrant
Reason, rule or principle why
the data warrant the conclusion.

Backing
Shows that the warrant can be relied upon as sound, relevant and weighty.

Rebuttal
A special situation in which the general presumption
on which the argument relies is to be set aside.

9 / 75

Toulmin Model of Reasoning – Example

Data
Brazil has the strongest combination of offensive
and defensive squads among the teams in the
football world cup.

[Qualifier] Conclusion
Brazil will [most probably] win
the world cup.

Warrant
Only a team that is really strong in both offense
and defense can complete for the championship.

Backing
The past records in the field of soccer indicate that.

Rebuttal
Unless Brazil is plagued by injuries.

10 / 75

Toulmin Model of Reasoning – Another Example

(observation)
Repairs have been done in your building.

(thus)
[Most probably] your rent will be increased
next month.

(since)
All tenant must pay their share
of repair to the building they inhabit.

(on account of)
In virtue of the tenancy law.

(unless)
The landlord has decided to ask for nothing.

11 / 75

When an Arguments is Accepted?
Dung’s Abstract Approach

An abstract perspective: An argument is an abstract entity whose
role is solely determined by its relations to other arguments. No
special attention is paid to the internal structure of the arguments.

Whether or not a rational agent believes in a statement depends
on whether or not the argument supporting this statement can be
successfully defended against the counterarguments.

12 / 75

Plan of Module 2

1 Motivation and Introduction

2 Abstract Argumentation Frameworks

Basic Definitions, Semantics

The Induced Entailments

Paraconsistent Semantics

3 Logical (Deductive) Argumentation Frameworks

4 Some Instantiations

Sequent-based Argumentation

ASPIC Systems

Assumption-Based Argumentation

13 / 75

Abstract Argumentation Frameworks

Definition
An argumentation framework is a pair AF = 〈Args,Attack〉, such that:

Args is a set of arguments,
Attack is a binary relation on Args. A attacks B if (A,B) ∈ Attack.

A Brazil will win the Mondial
B But the team is plagued by injuries
C Still, it has the strongest combination of offensive and defensive

squads in the world cup

The arguments that A attacks: A+ = {B | (A,B) ∈ Attack}
The arguments that attack A: A− = {B | (B,A) ∈ Attack}
Extensions to sets: S+ =

⋃
A∈S A+, S−=

⋃
A∈S A−

S attacks A if A ∈ S+.

14 / 75

Abstract Argumentation Frameworks

Definition
An argumentation framework is a pair AF = 〈Args,Attack〉, such that:

Args is a set of arguments,
Attack is a binary relation on Args. A attacks B if (A,B) ∈ Attack.

A Brazil will win the Mondial

B But the team is plagued by injuries
C Still, it has the strongest combination of offensive and defensive

squads in the world cup

A

The arguments that A attacks: A+ = {B | (A,B) ∈ Attack}
The arguments that attack A: A− = {B | (B,A) ∈ Attack}
Extensions to sets: S+ =

⋃
A∈S A+, S−=

⋃
A∈S A−

S attacks A if A ∈ S+.

14 / 75

Abstract Argumentation Frameworks

Definition
An argumentation framework is a pair AF = 〈Args,Attack〉, such that:

Args is a set of arguments,
Attack is a binary relation on Args. A attacks B if (A,B) ∈ Attack.

A Brazil will win the Mondial
B But the team is plagued by injuries

C Still, it has the strongest combination of offensive and defensive
squads in the world cup

AB

The arguments that A attacks: A+ = {B | (A,B) ∈ Attack}
The arguments that attack A: A− = {B | (B,A) ∈ Attack}
Extensions to sets: S+ =

⋃
A∈S A+, S−=

⋃
A∈S A−

S attacks A if A ∈ S+.

14 / 75

Abstract Argumentation Frameworks

Definition
An argumentation framework is a pair AF = 〈Args,Attack〉, such that:

Args is a set of arguments,
Attack is a binary relation on Args. A attacks B if (A,B) ∈ Attack.

A Brazil will win the Mondial
B But the team is plagued by injuries
C Still, it has the strongest combination of offensive and defensive

squads in the world cup

ABC

The arguments that A attacks: A+ = {B | (A,B) ∈ Attack}
The arguments that attack A: A− = {B | (B,A) ∈ Attack}
Extensions to sets: S+ =

⋃
A∈S A+, S−=

⋃
A∈S A−

S attacks A if A ∈ S+.

14 / 75

Abstract Argumentation Frameworks

Definition
An argumentation framework is a pair AF = 〈Args,Attack〉, such that:

Args is a set of arguments,
Attack is a binary relation on Args. A attacks B if (A,B) ∈ Attack.

A Brazil will win the Mondial
B But the team is plagued by injuries
C Still, it has the strongest combination of offensive and defensive

squads in the world cup

ABC

The arguments that A attacks: A+ = {B | (A,B) ∈ Attack}
The arguments that attack A: A− = {B | (B,A) ∈ Attack}
Extensions to sets: S+ =

⋃
A∈S A+, S−=

⋃
A∈S A−

S attacks A if A ∈ S+.
14 / 75

Which Arguments Should be Accepted?

ABC

C is not challenged by a counterargument, so it is accepted.
B is attacked by an accepted argument, so it is rejected.
A is attacked (only) by a rejected argument, so it is accepted.

Two primary principles of an accepted set S of arguments:

The arguments in S ‘can stand together’ – no accepted argument
attacks another accepted argument.
S is conflict free: S ∩ S+ = ∅.
S ‘can stand on its own’ – any attack on an argument in S is
counter-attacked by S (that is, S defends all of its elements).
S is admissible: S− ⊆ S+ (& it is conflict free).

15 / 75

Which Arguments Should be Accepted?

ABC

C is not challenged by a counterargument, so it is accepted.

B is attacked by an accepted argument, so it is rejected.
A is attacked (only) by a rejected argument, so it is accepted.

Two primary principles of an accepted set S of arguments:

The arguments in S ‘can stand together’ – no accepted argument
attacks another accepted argument.
S is conflict free: S ∩ S+ = ∅.
S ‘can stand on its own’ – any attack on an argument in S is
counter-attacked by S (that is, S defends all of its elements).
S is admissible: S− ⊆ S+ (& it is conflict free).

15 / 75

Which Arguments Should be Accepted?

ABC

C is not challenged by a counterargument, so it is accepted.
B is attacked by an accepted argument, so it is rejected.

A is attacked (only) by a rejected argument, so it is accepted.

Two primary principles of an accepted set S of arguments:

The arguments in S ‘can stand together’ – no accepted argument
attacks another accepted argument.
S is conflict free: S ∩ S+ = ∅.
S ‘can stand on its own’ – any attack on an argument in S is
counter-attacked by S (that is, S defends all of its elements).
S is admissible: S− ⊆ S+ (& it is conflict free).

15 / 75

Which Arguments Should be Accepted?

ABC

C is not challenged by a counterargument, so it is accepted.
B is attacked by an accepted argument, so it is rejected.
A is attacked (only) by a rejected argument, so it is accepted.

Two primary principles of an accepted set S of arguments:

The arguments in S ‘can stand together’ – no accepted argument
attacks another accepted argument.
S is conflict free: S ∩ S+ = ∅.
S ‘can stand on its own’ – any attack on an argument in S is
counter-attacked by S (that is, S defends all of its elements).
S is admissible: S− ⊆ S+ (& it is conflict free).

15 / 75

Which Arguments Should be Accepted?

ABC

C is not challenged by a counterargument, so it is accepted.
B is attacked by an accepted argument, so it is rejected.
A is attacked (only) by a rejected argument, so it is accepted.

Two primary principles of an accepted set S of arguments:

The arguments in S ‘can stand together’ – no accepted argument
attacks another accepted argument.
S is conflict free: S ∩ S+ = ∅.
S ‘can stand on its own’ – any attack on an argument in S is
counter-attacked by S (that is, S defends all of its elements).
S is admissible: S− ⊆ S+ (& it is conflict free).

15 / 75

Which Arguments Should be Accepted?

ABC

C is not challenged by a counterargument, so it is accepted.
B is attacked by an accepted argument, so it is rejected.
A is attacked (only) by a rejected argument, so it is accepted.

Two primary principles of an accepted set S of arguments:

The arguments in S ‘can stand together’ – no accepted argument
attacks another accepted argument.
S is conflict free: S ∩ S+ = ∅.

S ‘can stand on its own’ – any attack on an argument in S is
counter-attacked by S (that is, S defends all of its elements).
S is admissible: S− ⊆ S+ (& it is conflict free).

15 / 75

Which Arguments Should be Accepted?

ABC

C is not challenged by a counterargument, so it is accepted.
B is attacked by an accepted argument, so it is rejected.
A is attacked (only) by a rejected argument, so it is accepted.

Two primary principles of an accepted set S of arguments:

The arguments in S ‘can stand together’ – no accepted argument
attacks another accepted argument.
S is conflict free: S ∩ S+ = ∅.
S ‘can stand on its own’ – any attack on an argument in S is
counter-attacked by S (that is, S defends all of its elements).
S is admissible: S− ⊆ S+ (& it is conflict free).

15 / 75

Which Arguments Should be Accepted?

S is conflict free: No attacks between its arguments.

S is admissible: (conflict-free and) It defends all of its arguments.

ABC

Three admissible sets: ∅, {C}, {C,A}.

S is complete, if it is admissible, and defends only its arguments.

A single complete set: {C,A}.

16 / 75

Which Arguments Should be Accepted?

S is conflict free: No attacks between its arguments.

S is admissible: (conflict-free and) It defends all of its arguments.

ABC

Three admissible sets: ∅, {C}, {C,A}.

S is complete, if it is admissible, and defends only its arguments.

A single complete set: {C,A}.

16 / 75

Which Arguments Should be Accepted?

S is conflict free: No attacks between its arguments.

S is admissible: (conflict-free and) It defends all of its arguments.

ABC

Three admissible sets: ∅, {C}, {C,A}.

S is complete, if it is admissible, and defends only its arguments.

A single complete set: {C,A}.

16 / 75

Which Arguments Should be Accepted?

S is conflict free: No attacks between its arguments.

S is admissible: (conflict-free and) It defends all of its arguments.

ABC

Three admissible sets: ∅, {C}, {C,A}.

S is complete, if it is admissible, and defends only its arguments.

A single complete set: {C,A}.

16 / 75

Complete Extensions – Further Examples

ABC1. {C,A}

17 / 75

Complete Extensions – Further Examples

ABC1. {C,A}

ABC2.

17 / 75

Complete Extensions – Further Examples

ABC1. {C,A}

ABC2. {C,A}

17 / 75

Complete Extensions – Further Examples

ABC1. {C,A}

ABC2. {C,A}

ABC {B}

17 / 75

Complete Extensions – Further Examples

ABC1. {C,A}

ABC2. {C,A}

ABC {B}

ABC {}

17 / 75

Complete Extensions – Further Examples

ABC1. {C,A}

ABC2. {C,A}

ABC {B}

ABC {}

A1 A2BC3.

17 / 75

Complete Extensions – Further Examples

ABC1. {C,A}

ABC2. {C,A}

ABC {B}

ABC {}

A1 A2BBC3. {C}

17 / 75

Complete Extensions – Further Examples

ABC1. {C,A}

ABC2. {C,A}

ABC {B}

ABC {}

A1 A2BBC3. {C}

A1 A2BC {C,A1}

17 / 75

Complete Extensions – Further Examples

ABC1. {C,A}

ABC2. {C,A}

ABC {B}

ABC {}

A1 A2BBC3. {C}

A1 A2BC {C,A1}

A1 A2BC {C,A2}

17 / 75

Complete Extensions – Further Examples

Even-length cycles:

A B

CD

A B

CD

The statuses of the arguments are alternating
Two complete extensions: {A,C} and {B,D}

Odd-length cycles:

No argument belongs to a complete extension:

If A is accepted, then B is rejected. Thus, if C is accepted then
{A,C} is not cf., and if C is rejected then {A} is not admissible

The only complete extension is the emptyset

18 / 75

Complete Extensions – Further Examples

Even-length cycles:

A B

CD

A B

CD

The statuses of the arguments are alternating
Two complete extensions: {A,C} and {B,D}

Odd-length cycles:

No argument belongs to a complete extension:

If A is accepted, then B is rejected. Thus, if C is accepted then
{A,C} is not cf., and if C is rejected then {A} is not admissible

The only complete extension is the emptyset

18 / 75

Complete Extensions – Further Examples

Even-length cycles:

A B

CD

A B

CD

The statuses of the arguments are alternating
Two complete extensions: {A,C} and {B,D}

Odd-length cycles:

A

BC

No argument belongs to a complete extension:

If A is accepted, then B is rejected. Thus, if C is accepted then
{A,C} is not cf., and if C is rejected then {A} is not admissible

The only complete extension is the emptyset

18 / 75

Complete Extensions – Further Examples

Even-length cycles:

A B

CD

A B

CD

The statuses of the arguments are alternating
Two complete extensions: {A,C} and {B,D}

Odd-length cycles:

A

BC

No argument belongs to a complete extension:

If A is accepted, then B is rejected. Thus, if C is accepted then
{A,C} is not cf., and if C is rejected then {A} is not admissible
The only complete extension is the emptyset

18 / 75

Complete Extensions – Further Examples

Even-length cycles:

A B

CD

A B

CD

The statuses of the arguments are alternating
Two complete extensions: {A,C} and {B,D}

Odd-length cycles:

A

BC

No argument belongs to a complete extension:
If A is accepted,

then B is rejected. Thus, if C is accepted then
{A,C} is not cf., and if C is rejected then {A} is not admissible
The only complete extension is the emptyset

18 / 75

Complete Extensions – Further Examples

Even-length cycles:

A B

CD

A B

CD

The statuses of the arguments are alternating
Two complete extensions: {A,C} and {B,D}

Odd-length cycles:

A

BC

No argument belongs to a complete extension:
If A is accepted, then B is rejected.

Thus, if C is accepted then
{A,C} is not cf., and if C is rejected then {A} is not admissible
The only complete extension is the emptyset

18 / 75

Complete Extensions – Further Examples

Even-length cycles:

A B

CD

A B

CD

The statuses of the arguments are alternating
Two complete extensions: {A,C} and {B,D}

Odd-length cycles:

A

BC

No argument belongs to a complete extension:
If A is accepted, then B is rejected. Thus, if C is accepted then
{A,C} is not cf., and if C is rejected then {A} is not admissible

The only complete extension is the emptyset

18 / 75

Complete Extensions – Further Examples

Even-length cycles:

A B

CD

A B

CD

The statuses of the arguments are alternating
Two complete extensions: {A,C} and {B,D}

Odd-length cycles:

A

BC

No argument belongs to a complete extension:
If A is accepted, then B is rejected. Thus, if C is accepted then
{A,C} is not cf., and if C is rejected then {A} is not admissible
The only complete extension is the emptyset 18 / 75

Three-Valued Semantics (Labeling)

A1 A2BC

A1 A2BC

A1 A2BC

A

BC

19 / 75

Three-Valued Semantics (Labeling)

A1 A2BC

A1 A2BC

A1 A2BC

A

BC

The gray nodes are not accepted, but there is no reason to reject
them either: they are not attacked by an accepted argument.
3-valued complete labeling: In (accepted), Out (rejected), None.

19 / 75

Three-Valued Semantics (Labeling)

A1 A2BC

A1 A2BC

A1 A2BC

A

BC

1 An argument is accepted iff all of its attackers are rejected,
2 An argument is rejected iff it has an accepted attacker,
3 Otherwise, the status of the argument is undecided.

19 / 75

Extension-based Vs. Labeling Semantics
Complete extension E ⊆ Args of AF = 〈Args,Attack〉:

Conflict free: ¬∃A,B ∈ E such that (A,B) ∈ Attack,
Defends all of its arguments (admissibility):
E ⊆ Def(E) = {A ∈ Args | A− ⊆ E+}, and
Defends only its arguments: Def(E) ⊆ E .

Complete labeling L : Args→ {in,out,none} of AF :
(in): L(A) = in⇒ ∀B ∈ A− L(B) = out.
(out): L(A) = out⇒ ∃B ∈ A− such that L(B) = in.
(none): L(A) = none⇒ ∃B ∈ A− L(B) 6= out ∧ ∀B ∈ A− L(B) 6= in.

(for every argument A ∈ Args)

Extensions and labelings are dual semantics (Caminada & Gabbay, Stud Log. v93, 2009)

Complete extensions and complete labeling are one-to-one related:

If E is a complete extension, then In(L) = E , Out(L) = E+ and
None(Args) = Args \ (E ∪ E+), is a complete labeling.
If L is a complete labeling then E = In(L) is a complete extension.

20 / 75

Extension-based Vs. Labeling Semantics
Complete extension E ⊆ Args of AF = 〈Args,Attack〉:

Conflict free: ¬∃A,B ∈ E such that (A,B) ∈ Attack,
Defends all of its arguments (admissibility):
E ⊆ Def(E) = {A ∈ Args | A− ⊆ E+}, and
Defends only its arguments: Def(E) ⊆ E .

Complete labeling L : Args→ {in,out,none} of AF :
(in): L(A) = in⇒ ∀B ∈ A− L(B) = out.
(out): L(A) = out⇒ ∃B ∈ A− such that L(B) = in.
(none): L(A) = none⇒ ∃B ∈ A− L(B) 6= out ∧ ∀B ∈ A− L(B) 6= in.

(for every argument A ∈ Args)

Extensions and labelings are dual semantics (Caminada & Gabbay, Stud Log. v93, 2009)

Complete extensions and complete labeling are one-to-one related:

If E is a complete extension, then In(L) = E , Out(L) = E+ and
None(Args) = Args \ (E ∪ E+), is a complete labeling.
If L is a complete labeling then E = In(L) is a complete extension.

20 / 75

Extension-based Vs. Labeling Semantics
Complete extension E ⊆ Args of AF = 〈Args,Attack〉:

Conflict free: ¬∃A,B ∈ E such that (A,B) ∈ Attack,
Defends all of its arguments (admissibility):
E ⊆ Def(E) = {A ∈ Args | A− ⊆ E+}, and
Defends only its arguments: Def(E) ⊆ E .

Complete labeling L : Args→ {in,out,none} of AF :
(in): L(A) = in⇒ ∀B ∈ A− L(B) = out.
(out): L(A) = out⇒ ∃B ∈ A− such that L(B) = in.
(none): L(A) = none⇒ ∃B ∈ A− L(B) 6= out ∧ ∀B ∈ A− L(B) 6= in.

(for every argument A ∈ Args)

Extensions and labelings are dual semantics (Caminada & Gabbay, Stud Log. v93, 2009)

Complete extensions and complete labeling are one-to-one related:

If E is a complete extension, then In(L) = E , Out(L) = E+ and
None(Args) = Args \ (E ∪ E+), is a complete labeling.
If L is a complete labeling then E = In(L) is a complete extension.

20 / 75

Extension-based Vs. Labeling Semantics
Complete extension E ⊆ Args of AF = 〈Args,Attack〉:

Conflict free: ¬∃A,B ∈ E such that (A,B) ∈ Attack,
Defends all of its arguments (admissibility):
E ⊆ Def(E) = {A ∈ Args | A− ⊆ E+}, and
Defends only its arguments: Def(E) ⊆ E .

Complete labeling L : Args→ {in,out,none} of AF :
(in): L(A) = in⇒ ∀B ∈ A− L(B) = out.
(out): L(A) = out⇒ ∃B ∈ A− such that L(B) = in.
(none): L(A) = none⇒ ∃B ∈ A− L(B) 6= out ∧ ∀B ∈ A− L(B) 6= in.

(for every argument A ∈ Args)

Extensions and labelings are dual semantics (Caminada & Gabbay, Stud Log. v93, 2009)

Complete extensions and complete labeling are one-to-one related:
If E is a complete extension, then In(L) = E , Out(L) = E+ and
None(Args) = Args \ (E ∪ E+), is a complete labeling.

If L is a complete labeling then E = In(L) is a complete extension.

20 / 75

Extension-based Vs. Labeling Semantics
Complete extension E ⊆ Args of AF = 〈Args,Attack〉:

Conflict free: ¬∃A,B ∈ E such that (A,B) ∈ Attack,
Defends all of its arguments (admissibility):
E ⊆ Def(E) = {A ∈ Args | A− ⊆ E+}, and
Defends only its arguments: Def(E) ⊆ E .

Complete labeling L : Args→ {in,out,none} of AF :
(in): L(A) = in⇒ ∀B ∈ A− L(B) = out.
(out): L(A) = out⇒ ∃B ∈ A− such that L(B) = in.
(none): L(A) = none⇒ ∃B ∈ A− L(B) 6= out ∧ ∀B ∈ A− L(B) 6= in.

(for every argument A ∈ Args)

Extensions and labelings are dual semantics (Caminada & Gabbay, Stud Log. v93, 2009)

Complete extensions and complete labeling are one-to-one related:
If E is a complete extension, then In(L) = E , Out(L) = E+ and
None(Args) = Args \ (E ∪ E+), is a complete labeling.
If L is a complete labeling then E = In(L) is a complete extension.

20 / 75

Extension-based Vs. Labeling Semantics

A B C

D

E

E1 = ∅ L1 = {A :none,B :none,C :none,D :none,E :none}

E2 = {A} L2 = {A : in,B :out,C :none,D :none,E :none}

E3 = {B,D} L3 = {A :out,B : in,C :out,D : in,E :out}

21 / 75

Extension-based Vs. Labeling Semantics

A B C

D

E

E1 = ∅ L1 = {A :none,B :none,C :none,D :none,E :none}

E2 = {A} L2 = {A : in,B :out,C :none,D :none,E :none}

E3 = {B,D} L3 = {A :out,B : in,C :out,D : in,E :out}

21 / 75

Extension-based Vs. Labeling Semantics

A B C

D

E

E1 = ∅ L1 = {A :none,B :none,C :none,D :none,E :none}

E2 = {A} L2 = {A : in,B :out,C :none,D :none,E :none}

E3 = {B,D} L3 = {A :out,B : in,C :out,D : in,E :out}

21 / 75

Extension-based Vs. Labeling Semantics

A B C

D

E

E1 = ∅ L1 = {A :none,B :none,C :none,D :none,E :none}

E2 = {A} L2 = {A : in,B :out,C :none,D :none,E :none}

E3 = {B,D} L3 = {A :out,B : in,C :out,D : in,E :out}

21 / 75

Types of Extensions (Dung’s Semantics)

A conflict-free set E ⊆ Args is called:

naive, if it is a ⊆-maximal conflict-free subsets of Args,

admissible, if E ⊆ Def(E),

complete, if E = Def(E),

grounded , if it is ⊆-minimal complete extension,

preferred , if it is ⊆-maximal complete extension,

stable, if it is complete & E ∪E+ = Args (attacks anything not in it),

semi-stable, if it is a complete and ⊆-maximal w.r.t. E ∪E+ (range).

Other extensions are discussed, e.g., in Chapter 4 of the Handbook of Formal Argumentation: Abstract argumentation
frameworks and their semantics (Baroni, Caminada, Giacomin).

22 / 75

Types of Labeling and The Corresponding Extensions

Complete extension: conflict-free extension s.t. E = Def(E).
Complete labeling: 3-val function L satisfying (in), (out), (none).

Grounded extension: ⊆-minimal complete extension,
Complete labeling: complete labeling with ⊆-minimal in-values
(alternatively, ⊆-minimal out-values, or ⊆-maximal none-values).

Preferred extension: ⊆-maximal complete extension,
Preferred labeling: complete labeling with ⊆-maximal in-valued
(alternatively, ⊆-maximal out-values).

Stable extension: complete extension s.t. E ∪ E+ = Args,
Stable labeling: complete labeling without none-values.

Semi-stable extension: complete extension; ⊆-maximal E ∪ E+.
Stable labeling: complete labeling with ⊆-minimal none-values.

23 / 75

Example, Revisited

A B C

D

E

Grounded extension: ∅.
Grounded labeling: {A :none,B :none,C :none,D :none,E :none}.

Preferred extensions: {A}, {B,D}.
Preferred labeling: {A : in,B :out,C :none,D :none,E :none},

{A :out,B : in,C :out,D : in,E :out}.

(Semi) stable extension: {B,D}.
(Semi) stable labeling: {A :out,B : in,C :out,D : in,E :out}.

24 / 75

Extensions and Labelings are Dual Semantics

Extensions⇒ Labelings:
If E is a complete (respectively, grounded, preferred, stable,
semi-stable) extension,
then In(L) = E , Out(L) = E+, None(Args) = Args \ (E ∪ E+),
is a complete (respectively, grounded, preferred, stable,
semi-stable) labeling.

Labelings⇒ Extensions:
If L is a complete (respectively, grounded, preferred, stable,
semi-stable) labeling,
then E = In(L) is a complete (respectively, grounded, preferred,
stable, semi-stable) extension.

M.Caminada, D.Gabbay, A Logical Account of Formal Argumentation. Studia Logica 93(1–2), pp.109–145, 2009.
25 / 75

Relations and Facts

Naive extension

Conflict-free extension/labeling

Admissible extension

Complete extension/labeling

Preferred extension/labeling Grounded extension/labeling

Semi-stable extension/labeling

Stable extension/labeling

Is a

Is a

Is a

Is a

Is a

Is a Is a

The grounded extension/labeling is unique.
Stable extension/labeling do not always exist.

26 / 75

Plan of Module 2

1 Motivation and Introduction

2 Abstract Argumentation Frameworks (AAFs)

Basic Definitions, Semantics

The Induced Entailments

Paraconsistent Semantics

3 Logical (Deductive) Argumentation Frameworks

4 Some Instantiations

Sequent-based Argumentation

ASPIC Systems

Assumption-based Argumentation

27 / 75

Entailments Induced by AAFs

AF = 〈Args,Attack〉 – An abstract argumentation framework
Sem(AF) – The Sem-extensions of AF
(Sem ∈ {Cmp,Grd,Prf,Stb,SStb})

Skeptical entailments: AF |∼∩sem A if A ∈
⋂

Sem(AF)

Credulous entailments: AF |∼∪sem A if A ∈
⋃

Sem(AF)

A ¬A B

Grd = {{B}}, Prf = Stb = SStb = {{A,B}, {¬A,B}}.
∀sem ∈ {cmp,grd,prf, stb, sstb},∀? ∈ {∩,∪}: AF |∼?sem B.
∀sem ∈ {cmp,grd,prf, stb, sstb}: AF 6|∼∩sem A and AF 6|∼∩sem¬A.

Intuitively (& informally), the skeptical entailments are
‘paraconsistent’ in nature.

28 / 75

Entailments Induced by AAFs

AF = 〈Args,Attack〉 – An abstract argumentation framework
Sem(AF) – The Sem-extensions of AF
(Sem ∈ {Cmp,Grd,Prf,Stb,SStb})

Skeptical entailments: AF |∼∩sem A if A ∈
⋂

Sem(AF)

Credulous entailments: AF |∼∪sem A if A ∈
⋃

Sem(AF)

A ¬A B

Grd = {{B}}, Prf = Stb = SStb = {{A,B}, {¬A,B}}.
∀sem ∈ {cmp,grd,prf, stb, sstb},∀? ∈ {∩,∪}: AF |∼?sem B.
∀sem ∈ {cmp,grd,prf, stb, sstb}: AF 6|∼∩sem A and AF 6|∼∩sem¬A.

Intuitively (& informally), the skeptical entailments are
‘paraconsistent’ in nature.

28 / 75

Entailments Induced by AAFs

AF = 〈Args,Attack〉 – An abstract argumentation framework
Sem(AF) – The Sem-extensions of AF
(Sem ∈ {Cmp,Grd,Prf,Stb,SStb})

Skeptical entailments: AF |∼∩sem A if A ∈
⋂

Sem(AF)

Credulous entailments: AF |∼∪sem A if A ∈
⋃

Sem(AF)

A ¬A B

Grd = {{B}}, Prf = Stb = SStb = {{A,B}, {¬A,B}}.
∀sem ∈ {cmp,grd,prf, stb, sstb},∀? ∈ {∩,∪}: AF |∼?sem B.
∀sem ∈ {cmp,grd,prf, stb, sstb}: AF 6|∼∩sem A and AF 6|∼∩sem¬A.

Intuitively (& informally), the skeptical entailments are
‘paraconsistent’ in nature.

28 / 75

Entailments Induced by AAFs

AF = 〈Args,Attack〉 – An abstract argumentation framework
Sem(AF) – The Sem-extensions of AF
(Sem ∈ {Cmp,Grd,Prf,Stb,SStb})

Skeptical entailments: AF |∼∩sem A if A ∈
⋂

Sem(AF)

Credulous entailments: AF |∼∪sem A if A ∈
⋃

Sem(AF)

A ¬A B

Grd = {{B}}, Prf = Stb = SStb = {{A,B}, {¬A,B}}.
∀sem ∈ {cmp,grd,prf, stb, sstb},∀? ∈ {∩,∪}: AF |∼?sem B.
∀sem ∈ {cmp,grd,prf, stb, sstb}: AF 6|∼∩sem A and AF 6|∼∩sem¬A.

Intuitively (& informally), the skeptical entailments are
‘paraconsistent’ in nature.

28 / 75

Entailments Induced by AAFs

AF = 〈Args,Attack〉 – An abstract argumentation framework
Sem(AF) – The Sem-extensions of AF
(Sem ∈ {Cmp,Grd,Prf,Stb,SStb})

Skeptical entailments: AF |∼∩sem A if A ∈
⋂

Sem(AF)

Credulous entailments: AF |∼∪sem A if A ∈
⋃

Sem(AF)

A ¬A B

Grd = {{B}}, Prf = Stb = SStb = {{A,B}, {¬A,B}}.
∀sem ∈ {cmp,grd,prf, stb, sstb},∀? ∈ {∩,∪}: AF |∼?sem B.
∀sem ∈ {cmp,grd,prf, stb, sstb}: AF 6|∼∩sem A and AF 6|∼∩sem¬A.

Intuitively (& informally), the skeptical entailments are
‘paraconsistent’ in nature.

28 / 75

Plan of Module 2

1 Motivation and Introduction

2 Abstract Argumentation Frameworks (AAFs)

Basic Definitions, Semantics

The Induced Entailments

Paraconsistent Semantics

3 Logical (Deductive) Argumentation Frameworks

4 Some Instantiations

Sequent-based Argumentation

ASPIC Systems

Assumption-based Argumentation

29 / 75

Conflict-Tolerant Semantics

A more radical, paraconsistent approach that tolerates conflicts
already in the extensions:

Extensions may not be conflict-free.

Labelings are four-valued: Args→ {in,out,none,both}.
(“accepted”, “rejected”, “undecided”, “controversial”)

Primary properties:

A conservative extension of the conflict-free (3-valued) approach:
all conflict-free semantics are still obtained and new types of
semantics are introduced.
Any AAF has a nonempty p-complete extension.

O.Arieli. On the acceptance of loops in argumentation frameworks. Journal of Logic and Computation 26(4), 2016.
30 / 75

p-Extensions and p-Labelings

E ⊆ Args is paraconsistently admissible (p-admissible), if E ⊆ Def(E).
E ⊆ Args is paraconsistently complete (p-complete), if E = Def(E).

A 4-val. labeling L is p-complete, if it satisfies the following properties:

(pIn) L(A) = in⇔ ∀B ∈ A− L(B) = out

(pOut) L(A) = out⇔ ∃B ∈ A− L(B) ∈ {in, both} ∧ ∃B ∈ A− L(B) ∈ {in, none}
(pBoth) L(A) = both⇔ ∀B ∈ A− L(B) ∈ {out, both} ∧ ∃B ∈ A− L(B) = both

(pNone) L(A) = none⇔ ∀B ∈ A− L(B) ∈ {out, none} ∧ ∃B ∈ A− L(B) = none

(for every argument A ∈ Args)

31 / 75

p-Extensions and p-Labelings

E ⊆ Args is paraconsistently admissible (p-admissible), if E ⊆ Def(E).
E ⊆ Args is paraconsistently complete (p-complete), if E = Def(E).

A 4-val. labeling L is p-complete, if it satisfies the following properties:

(pIn) L(A) = in⇔ ∀B ∈ A− L(B) = out

(pOut) L(A) = out⇔ ∃B ∈ A− L(B) ∈ {in, both} ∧ ∃B ∈ A− L(B) ∈ {in, none}
(pBoth) L(A) = both⇔ ∀B ∈ A− L(B) ∈ {out, both} ∧ ∃B ∈ A− L(B) = both

(pNone) L(A) = none⇔ ∀B ∈ A− L(B) ∈ {out, none} ∧ ∃B ∈ A− L(B) = none

(for every argument A ∈ Args)

31 / 75

p-Extensions and p-Labelings are Dual Semantics

From extensions to 4-valued labelings:

ExtLab(E)(A) =

in if A ∈ E and A 6∈ E+

out if A 6∈ E and A ∈ E+

both if A ∈ E and A ∈ E+

none if A 6∈ E and A 6∈ E+

From 4-valued labelings to extensions:

LabExt(L) = In(L)
⋃

Both(L) = {A | L(A) ∈ {in,both}} (cf.D = {t,>} in FDE)

p-complete extensions and p-complete labelings are 1-to-1 related:

If E is a p-complete extension of AF then ExtLab(E) is a
p-complete labeling of AF .

If L is a p-complete labeling of AF then LabExt(L) is a
p-complete extension for AF .

ExtLab(LabExt(L)) = L, LabExt(ExtLab(E)) = E .

32 / 75

p-Extensions and p-Labelings are Dual Semantics

From extensions to 4-valued labelings:

ExtLab(E)(A) =

in if A ∈ E and A 6∈ E+

out if A 6∈ E and A ∈ E+

both if A ∈ E and A ∈ E+

none if A 6∈ E and A 6∈ E+

From 4-valued labelings to extensions:

LabExt(L) = In(L)
⋃

Both(L) = {A | L(A) ∈ {in,both}} (cf.D = {t,>} in FDE)

p-complete extensions and p-complete labelings are 1-to-1 related:

If E is a p-complete extension of AF then ExtLab(E) is a
p-complete labeling of AF .

If L is a p-complete labeling of AF then LabExt(L) is a
p-complete extension for AF .

ExtLab(LabExt(L)) = L, LabExt(ExtLab(E)) = E .

32 / 75

p-Extensions and p-Labelings are Dual Semantics

From extensions to 4-valued labelings:

ExtLab(E)(A) =

in if A ∈ E and A 6∈ E+

out if A 6∈ E and A ∈ E+

both if A ∈ E and A ∈ E+

none if A 6∈ E and A 6∈ E+

From 4-valued labelings to extensions:

LabExt(L) = In(L)
⋃

Both(L) = {A | L(A) ∈ {in,both}} (cf.D = {t,>} in FDE)

p-complete extensions and p-complete labelings are 1-to-1 related:

If E is a p-complete extension of AF then ExtLab(E) is a
p-complete labeling of AF .

If L is a p-complete labeling of AF then LabExt(L) is a
p-complete extension for AF .

ExtLab(LabExt(L)) = L, LabExt(ExtLab(E)) = E .

32 / 75

p-Extensions and p-Labelings are Dual Semantics

From extensions to 4-valued labelings:

ExtLab(E)(A) =

in if A ∈ E and A 6∈ E+

out if A 6∈ E and A ∈ E+

both if A ∈ E and A ∈ E+

none if A 6∈ E and A 6∈ E+

From 4-valued labelings to extensions:

LabExt(L) = In(L)
⋃

Both(L) = {A | L(A) ∈ {in,both}} (cf.D = {t,>} in FDE)

p-complete extensions and p-complete labelings are 1-to-1 related:

If E is a p-complete extension of AF then ExtLab(E) is a
p-complete labeling of AF .

If L is a p-complete labeling of AF then LabExt(L) is a
p-complete extension for AF .

ExtLab(LabExt(L)) = L, LabExt(ExtLab(E)) = E .
32 / 75

Conflict-Free and Conflict-Tolerant Semantics

A labeling is called both-free if it has no both assignments (i.e.,
Both(L) = {A | L(A) = both} = ∅).

(Conflict-free) complete and (both-free) p-complete extensions &
labelings:

If L is a both-free p-complete labeling for AF , then LabExt(L) is a
complete extension of AF .

If E is a complete extension of AF then ExtLab(E) is a both-free
p-complete labeling for AF .

L is a complete labeling for AF iff it is a both-free p-complete
labeling for AF .
E is a complete extension of AF iff it is a conflict-free p-complete
extension of AF .

33 / 75

More Relations

A variety of conflict-free semantics for abstract AF may be defined in
terms of both-free p-complete labelings. For instance,
E is a grounded extension of AF iff it is induced by a both-free
p-complete labeling L of AF with ⊆-minimal in-values
(alternatively, with ⊆-minimal out-values).

E is a preferred extension of AF iff it is induced by a both-free
p-complete labeling L of AF with ⊆-maximal in-values
(alternatively, with ⊆-maximal out-values).

E is a semi-stable extension of AF iff it is induced by a both-free
p-complete labeling L of AF with ⊆-minimal none-values.

E is a stable extension of AF iff it is induced by a both-free
p-complete labeling L of AF without none-values. .
Thus: E is a stable extension of AF iff it is induced by a
{both,none}-free p-complete labeling of AF .

34 / 75

Summary of the Semantic Relations

Grounded extension
/ labeling

Complete extension

Preferred extension
/ labeling

Semi-stable extension / labeling

Stable extension / labeling

Is a

Is a

Is a

Is a

p-Complete extension

Both-free p-complete labeling,
No none-assignments

Both-free p-complete labeling,
Minimal none-assignments

Both-free p-complete labeling,
Maximal in- (out-) assignments

Both-free p-complete labeling

p-Complete labeling

Both-free p-complete labeling,
Minimal in- (out-) assignments

Both-free p-complete labeling

p-Complete labeling

Is a

35 / 75

Example

A B C D

A B C D Induced set
1 in out in out {A,C}
2 in out in both {A,C,D}
3 in out none in {A,D}
4 in out none none {A}
5 out in out in {B,D}
6 out in out none {B}
7 out in both out {B,C}
8 out in both both {B,C,D}

A B C D Induced set
9 none none in out {C}

10 none none in both {C,D}
11 none none none in {D}
12 none none none none {}
13 both both out in {A,B,D}
14 both both out none {A,B}
15 both both both out {A,B,C}
16 both both both both {A,B,C,D}

The 4-valued labelings of AF

36 / 75

Example

A B C D

A B C D Induced set
1 in out in out {A,C}
2 in out in both {A,C,D}
3 in out none in {A,D}
4 in out none none {A}
5 out in out in {B,D}
6 out in out none {B}
7 out in both out {B,C}
8 out in both both {B,C,D}

A B C D Induced set
9 none none in out {C}

10 none none in both {C,D}
11 none none none in {D}
12 none none none none {}
13 both both out in {A,B,D}
14 both both out none {A,B}
15 both both both out {A,B,C}
16 both both both both {A,B,C,D}

The p-complete labelings / extensions of AF

36 / 75

Example

A B C D

A B C D Induced set
1 in out in out {A,C}
2 in out in both {A,C,D}
3 in out none in {A,D}
4 in out none none {A}
5 out in out in {B,D}
6 out in out none {B}
7 out in both out {B,C}
8 out in both both {B,C,D}

A B C D Induced set
9 none none in out {C}

10 none none in both {C,D}
11 none none none in {D}
12 none none none none {}
13 both both out in {A,B,D}
14 both both out none {A,B}
15 both both both out {A,B,C}
16 both both both both {A,B,C,D}

The complete labelings / extensions of AF

36 / 75

Example

A B C D

A B C D Induced set
1 in out in out {A,C}
2 in out in both {A,C,D}
3 in out none in {A,D}
4 in out none none {A}
5 out in out in {B,D}
6 out in out none {B}
7 out in both out {B,C}
8 out in both both {B,C,D}

A B C D Induced set
9 none none in out {C}

10 none none in both {C,D}
11 none none none in {D}
12 none none none none {}
13 both both out in {A,B,D}
14 both both out none {A,B}
15 both both both out {A,B,C}
16 both both both both {A,B,C,D}

The stable (and preferred) labelings / extensions of AF

36 / 75

Representations by Theories in Extended FDE

The extensions of AF = 〈Args,Attack〉 may be represented by theories in
Dunn-Belnap logic FDE extended with D’Ottaviano and da Costa’s implication
(a ⊃ b = t if a ∈ {f ,⊥}, otherwise a ⊃ b = b).

The language: an atom for each argument + {¬,∨,∧,⊃,F}.

Formulas for expressing different sates of arguments: (where not ψ is ψ ⊃ F):

abbreviation formula values
cautiously-accept(a) a t ,>
cautiously-reject(a) ¬a f ,>
conflicting(a) cautiously-accept(a) ∧ cautiously-reject(a) >
coherent(a) not conflicting(a) t , f ,⊥
accept(a) cautiously-accept(a) ∧ coherent(a) t
reject(a) cautiously-reject(a) ∧ coherent(a) f
undecided(a) not (cautiously-accept(a) ∨ cautiously-reject(a)) ⊥

E.g., coherent(a) = not conflicting(a) = conflicting(a) ⊃ F = (a ∧ ¬a) ⊃ F.

I. M. D’Ottaviano, and N. C. A. da Costa. Sur un probl‘em de Ja´skowski. C. R.Acad Sc. Paris, Volume 270, S‘erie A
pp. 1349–1353, 1970.

37 / 75

Representations by Theories in Extended FDE

The extensions of AF = 〈Args,Attack〉 may be represented by theories in
Dunn-Belnap logic FDE extended with D’Ottaviano and da Costa’s implication
(a ⊃ b = t if a ∈ {f ,⊥}, otherwise a ⊃ b = b).

The language: an atom for each argument + {¬,∨,∧,⊃,F}.

Formulas for expressing different sates of arguments: (where not ψ is ψ ⊃ F):

abbreviation formula values
cautiously-accept(a) a t ,>
cautiously-reject(a) ¬a f ,>
conflicting(a) cautiously-accept(a) ∧ cautiously-reject(a) >
coherent(a) not conflicting(a) t , f ,⊥
accept(a) cautiously-accept(a) ∧ coherent(a) t
reject(a) cautiously-reject(a) ∧ coherent(a) f
undecided(a) not (cautiously-accept(a) ∨ cautiously-reject(a)) ⊥

E.g., coherent(a) = not conflicting(a) = conflicting(a) ⊃ F = (a ∧ ¬a) ⊃ F.

I. M. D’Ottaviano, and N. C. A. da Costa. Sur un probl‘em de Ja´skowski. C. R.Acad Sc. Paris, Volume 270, S‘erie A
pp. 1349–1353, 1970.

37 / 75

Representations by Theories in Extended FDE

The 4-properties of p-complete labellings are now represented by:

pIn(x) accept(x)↔
∧

y∈x−

reject(y)

pOut(x) reject(x)↔
(∨
y∈x−

cautiously-accept(y) ∧
∨

y∈x−

(
accept(y) ∨ undecided(y)

))
pConf(x) conflicting(x)↔

(∧
y∈x−

(
reject(y) ∨ conflicting(y)

)
∧
∨

y∈x−

conflicting(y)
)

pUndec(x) undecided(x)↔
(∧
y∈x−

(
reject(y) ∨ undecided(y)

)
∧
∨

y∈x−

undecided(y)
)

Given AF = 〈Args,Attack〉, the formula ψ(a,AF) is ψ(x) where x is
substituted by the atom a (associated with an argument A ∈ Args), and
where the elements in a− (and in a+) are determined by Attack.

A B C pIn(c,AF) : accept(c)↔ reject(b)

38 / 75

Representations by Theories in Extended FDE

Representation of the p-complete labellings of AF = 〈Args,Attack〉:

pCMP(AF) =
⋃

x∈Args

pIn(x ,AF) ∪
⋃

x∈Args

pOut(x ,AF) ∪
⋃

x∈Args

pConf(x ,AF) ∪
⋃

x∈Args

pUndec(x ,AF)

Proposition
Given AF = 〈Args,Attack〉, there is a correspondence between the 4-valued
models of pCMP(AF), the 4-states p-complete labelings of AF , and the
p-complete extensions of AF :

if ν is a model of pCMP(AF) then ValLal(ν) is a p-complete labeling of
AF and LalExt(ValLab(ν)) is a p-complete extension of AF .

If L is a p-complete labeling of AF then LalVal(L) is a model of
pCMP(AF) and LalExt(L) is a p-complete extension of AF .

If E is a p-complete extension of AF then ExtLab(E) is a p-complete
labeling of AF and LalVal(EextLab(E)) is a model of pCMP(AF).

O.Arieli. Conflict-free and conflict-tolerant semantics for constrained argumentation frameworks. Journal of Applied Logic
13(4):582–604, 2015.

39 / 75

Representations by Theories in Extended FDE

Representation of the p-complete labellings of AF = 〈Args,Attack〉:

pCMP(AF) =
⋃

x∈Args

pIn(x ,AF) ∪
⋃

x∈Args

pOut(x ,AF) ∪
⋃

x∈Args

pConf(x ,AF) ∪
⋃

x∈Args

pUndec(x ,AF)

Proposition
Given AF = 〈Args,Attack〉, there is a correspondence between the 4-valued
models of pCMP(AF), the 4-states p-complete labelings of AF , and the
p-complete extensions of AF :

if ν is a model of pCMP(AF) then ValLal(ν) is a p-complete labeling of
AF and LalExt(ValLab(ν)) is a p-complete extension of AF .

If L is a p-complete labeling of AF then LalVal(L) is a model of
pCMP(AF) and LalExt(L) is a p-complete extension of AF .

If E is a p-complete extension of AF then ExtLab(E) is a p-complete
labeling of AF and LalVal(EextLab(E)) is a model of pCMP(AF).

O.Arieli. Conflict-free and conflict-tolerant semantics for constrained argumentation frameworks. Journal of Applied Logic
13(4):582–604, 2015.

39 / 75

Representations of Other Extensions/Labellings

p-complete labeling:
pCMP(AF)

complete labeling:
CMP(AF) = pCMP(AF)∪

{
accept(x)∨reject(x)∨undecided(x) | x ∈Args

}
.

stable labeling:
STB(AF) = pCMP(AF) ∪

{
accept(x) ∨ reject(x) | x ∈ Args

}
.

For grounded and preferred labeling/extensions, we need to express also
minimality/maximality conditions. We do so by incorporating Quantified
Boolean Formulas (QBFs), namely: extending the propositional language
with universal and existential quantifiers ∀,∃ over propositional variables..

Example: ∃x∀yψ means that there exists a truth assignment for x such that
for every truth assignment for y, the formula ψ is true.
(where, e.g., ∀xψ stands for ψ[T/x] ∧ ψ[F/x] ∧ ψ[B/x] ∧ ψ[N/x]).

40 / 75

Representations of Other Extensions/Labellings

p-complete labeling:
pCMP(AF)

complete labeling:
CMP(AF) = pCMP(AF)∪

{
accept(x)∨reject(x)∨undecided(x) | x ∈Args

}
.

stable labeling:
STB(AF) = pCMP(AF) ∪

{
accept(x) ∨ reject(x) | x ∈ Args

}
.

For grounded and preferred labeling/extensions, we need to express also
minimality/maximality conditions. We do so by incorporating Quantified
Boolean Formulas (QBFs), namely: extending the propositional language
with universal and existential quantifiers ∀,∃ over propositional variables..

Example: ∃x∀yψ means that there exists a truth assignment for x such that
for every truth assignment for y, the formula ψ is true.
(where, e.g., ∀xψ stands for ψ[T/x] ∧ ψ[F/x] ∧ ψ[B/x] ∧ ψ[N/x]).

40 / 75

Representations of Other Extensions/Labellings

p-complete labeling:
pCMP(AF)

complete labeling:
CMP(AF) = pCMP(AF)∪

{
accept(x)∨reject(x)∨undecided(x) | x ∈Args

}
.

stable labeling:
STB(AF) = pCMP(AF) ∪

{
accept(x) ∨ reject(x) | x ∈ Args

}
.

For grounded and preferred labeling/extensions, we need to express also
minimality/maximality conditions. We do so by incorporating Quantified
Boolean Formulas (QBFs), namely: extending the propositional language
with universal and existential quantifiers ∀,∃ over propositional variables..

Example: ∃x∀yψ means that there exists a truth assignment for x such that
for every truth assignment for y, the formula ψ is true.
(where, e.g., ∀xψ stands for ψ[T/x] ∧ ψ[F/x] ∧ ψ[B/x] ∧ ψ[N/x]).

40 / 75

Representations of Other Extensions/Labellings

Mint (pCMP(AF)): minimization of t assignments in p-complete labelings:

∀x1, . . . , xn

(∧
ai∈Args

pCMP(AF)
[
x1/a1, . . . , xn/an

]
⊃(∧

ai∈Args, 1≤i≤n

(
accept(xi) ⊃ accept(ai)

)
⊃

∧
ai∈Args, 1≤i≤n

(
accept(ai) ⊃ accept(xi)

)))

Maxt (pCMP(AF)): maximization of t assignments in p-complete labelings:

∀x1, . . . , xn

(∧
ai∈Args

pCMP(AF)
[
x1/a1, . . . , xn/an

]
⊃(∧

ai∈Args, 1≤i≤n

(
accept(ai) ⊃ accept(xi)

)
⊃

∧
ai∈Args, 1≤i≤n

(
accept(xi) ⊃ accept(ai)

)))

41 / 75

Representations of Other Extensions/Labellings

p-grounded labeling:
pGRD(AF) = pCMP(AF) ∪

{
Mint (pCMP(AF))

}
.

p-perferred labeling:
pPRF(AF) = pCMP(AF) ∪

{
Maxt (pCMP(AF))

}
.

Proposition
Given AF = 〈Args,Attack〉.

There is a correspondence between the 4-valued models of pGRD(AF),
the p-grounded labelings of AF , and the p-grounded extensions of AF .

There is a correspondence between the 4-valued models of pPRF(AF),
the p-preferred labelings of AF , and the p-preferred extensions of AF .

Similar results are obtained for stable, semi-stable extensions/labellings and
the corresponding semantics for the 3-valued case.

42 / 75

Representations of Other Extensions/Labellings

p-grounded labeling:
pGRD(AF) = pCMP(AF) ∪

{
Mint (pCMP(AF))

}
.

p-perferred labeling:
pPRF(AF) = pCMP(AF) ∪

{
Maxt (pCMP(AF))

}
.

Proposition
Given AF = 〈Args,Attack〉.

There is a correspondence between the 4-valued models of pGRD(AF),
the p-grounded labelings of AF , and the p-grounded extensions of AF .

There is a correspondence between the 4-valued models of pPRF(AF),
the p-preferred labelings of AF , and the p-preferred extensions of AF .

Similar results are obtained for stable, semi-stable extensions/labellings and
the corresponding semantics for the 3-valued case.

42 / 75

Further References

OBF-theories for representing semantics of abstract argumentation
frameworks:
M. Diller, J. P. Wallner, S. Woltran. Reasoning in abstract dialectical
frameworks using quantified Boolean formulas. Journal of Argument &
Computation 6(2): 149–177, 2015.

A survey on other logical theories for standard, 3-valued semantics of
abstract argumentation:
P. Besnard, C. Cayrol, M. Lagasquie-Schiex. Logical theories and abstract
argumentation: A survey of existing works, Journal of Argument &
Computation 11(1–2): 41–102, 2020.

A survey on computation methods and Implementations:

F. Cerutti, S. A. Gaggl, M. Thimm, J. P. Wallne. Foundations of
implementations for formal argumentation, Journal of Applied Logics,
IFCoLog Journal of Logics and their Applications 4(8): 2623–2706, 2017.

43 / 75

Plan of Module 2

1 Motivation and Introduction

2 Abstract Argumentation Frameworks (AAFs)

Basic Definitions, Semantics

The Induced Entailments

Paraconsistent Semantics

3 Logical (Deductive) Argumentation Frameworks

4 Some Instantiations

Sequent-based Argumentation

ASPIC Systems

Assumption-based Argumentation

44 / 75

Logical (Deductive) Argumentation
[Simari & Loui,1992, Besnard & Hunter,2001]

Arguments are not just arbitrary abstract entities, but represent explicit
inferences (based on some underlying logic).

Definition (Besnard & Hunter)

A BH-argument based on S is a pair A = 〈Γ, ψ〉, where:
S (the set of assertions; background knowledge),
Γ (the support set) – finite sets of propositional formulas,
ψ (the conclusion) – a propositional formula,
Γ is a minimally consistent subset of S such that Γ `CL ψ.

Notation: ArgsBH(S) – the set of the S-based BH-arguments.

45 / 75

Logical (Deductive) Argumentation
[Simari & Loui,1992, Besnard & Hunter,2001]

Arguments are not just arbitrary abstract entities, but represent explicit
inferences (based on some underlying logic).

Definition (Besnard & Hunter)

A BH-argument based on S is a pair A = 〈Γ, ψ〉, where:
S (the set of assertions; background knowledge),
Γ (the support set) – finite sets of propositional formulas,
ψ (the conclusion) – a propositional formula,
Γ is a minimally consistent subset of S such that Γ `CL ψ.

Notation: ArgsBH(S) – the set of the S-based BH-arguments.

45 / 75

Logical (Deductive) Argumentation
[Simari & Loui,1992, Besnard & Hunter,2001]

Arguments are not just arbitrary abstract entities, but represent explicit
inferences (based on some underlying logic).

Definition (Besnard & Hunter)

A BH-argument based on S is a pair A = 〈Γ, ψ〉, where:
S (the set of assertions; background knowledge),
Γ (the support set) – finite sets of propositional formulas,
ψ (the conclusion) – a propositional formula,
Γ is a minimally consistent subset of S such that Γ `CL ψ.

Notation: ArgsBH(S) – the set of the S-based BH-arguments.

45 / 75

What is a Logical Argument?

Are all the restrictions on logical arguments really needed?

Definition
A BH-argument based on S is a pair A = 〈Γ, ψ〉, where:
S, Γ – finite sets of propositional formulas,
ψ – a propositional formula,
Γ is a minimally consistent subset of S such that Γ `CL ψ.

Extensions to arbitrary (propositional) languages
Extensions to arbitrary (effectively computable) logics
The support sets need not be minimal
The support sets need not be consistent

46 / 75

What is a Logical Argument?

Are all the restrictions on logical arguments really needed?

Definition
A BH-argument based on S is a pair A = 〈Γ, ψ〉, where:
S, Γ – finite sets of propositional formulas,
ψ – a propositional formula,
Γ is a minimally consistent subset of S such that Γ `CL ψ.

Extensions to arbitrary (propositional) languages
Extensions to arbitrary (effectively computable) logics
The support sets need not be minimal
The support sets need not be consistent

46 / 75

What is a Logical Argument?

Are all the restrictions on logical arguments really needed?

Definition
A BH-argument based on S is a pair A = 〈Γ, ψ〉, where:
S, Γ – finite sets of propositional formulas,
ψ – a propositional formula,
Γ is a minimally consistent subset of S such that Γ `CL ψ.

Extensions to arbitrary (propositional) languages
Extensions to arbitrary (effectively computable) logics
The support sets need not be minimal
The support sets need not be consistent

46 / 75

What is a Logical Argument?

1. The Underlying Logic Need Not Be Classical Logic

Recall from Module 1:

A (Tarskian) consequence relation ` for a language L:

Reflexivity: ψ ` ψ.
Monotonicity: if S ` ψ and S ⊆ S ′, then S ′ ` ψ.
Transitivity: if S ` ψ and S ′, ψ ` ϕ then S,S ′ ` ϕ.

A consequence relation ` is called:
Structural: if S ` ψ then θ(Γ) ` θ(ψ) for every L-substitution θ.
Non-trivial: S 6` ψ for some S 6= ∅.
Finitary: if S ` ψ then Γ ` ψ for some finite Γ ⊆ S.

A (propositional) logic is a pair L = 〈L,`〉, where
L is a propositional language, and
` is a structural, non-trivial and finitary CR for L.

47 / 75

What is a Logical Argument?

2. The Language Need Not Be The Standard Propositional One

Recall from Module 1:

∧ is a conjunction for L if S ` ψ ∧ ϕ iff S ` ψ and T ` ϕ.
(Equivalently, Γ, ψ ∧ φ ` τ ⇔ Γ, ψ, φ ` τ)

∨ is a disjunction for L if S, ψ ∨ ϕ ` σ iff S, ψ ` σ and S, ϕ ` σ.
(Equivalently, if ` is multi-conclusioned, Γ ` ψ ∨ φ ⇔ Γ ` ψ, φ)

⊃ is an implication for L if S, ϕ ` ψ iff S ` ϕ ⊃ ψ.
(Inferences to theoremhood: ψ1, . . . , ψn ` φ ⇔ ` ψ1 ⊃ (ψ2 . . . ⊃ (ψn ⊃ φ))

¬ is a (weak) negation for L if p 6` ¬p and ¬p 6` p.
(A stronger condition: ¬-containment in / coherence with classical logic)

48 / 75

What is a Logical Argument?

2. The Language Need Not Be The Standard Propositional One

Recall from Module 1:

∧ is a conjunction for L if S ` ψ ∧ ϕ iff S ` ψ and T ` ϕ.

(Equivalently, Γ, ψ ∧ φ ` τ ⇔ Γ, ψ, φ ` τ)

∨ is a disjunction for L if S, ψ ∨ ϕ ` σ iff S, ψ ` σ and S, ϕ ` σ.

(Equivalently, if ` is multi-conclusioned, Γ ` ψ ∨ φ ⇔ Γ ` ψ, φ)

⊃ is an implication for L if S, ϕ ` ψ iff S ` ϕ ⊃ ψ.

(Inferences to theoremhood: ψ1, . . . , ψn ` φ ⇔ ` ψ1 ⊃ (ψ2 . . . ⊃ (ψn ⊃ φ))

¬ is a (weak) negation for L if p 6` ¬p and ¬p 6` p.

(A stronger condition: ¬-containment in / coherence with classical logic)

48 / 75

What is a Logical Argument?

2. The Language Need Not Be The Standard Propositional One

Recall from Module 1:

∧ is a conjunction for L if S ` ψ ∧ ϕ iff S ` ψ and T ` ϕ.
(Equivalently, Γ, ψ ∧ φ ` τ ⇔ Γ, ψ, φ ` τ)

∨ is a disjunction for L if S, ψ ∨ ϕ ` σ iff S, ψ ` σ and S, ϕ ` σ.
(Equivalently, if ` is multi-conclusioned, Γ ` ψ ∨ φ ⇔ Γ ` ψ, φ)

⊃ is an implication for L if S, ϕ ` ψ iff S ` ϕ ⊃ ψ.
(Inferences to theoremhood: ψ1, . . . , ψn ` φ ⇔ ` ψ1 ⊃ (ψ2 . . . ⊃ (ψn ⊃ φ))

¬ is a (weak) negation for L if p 6` ¬p and ¬p 6` p.
(A stronger condition: ¬-containment in / coherence with classical logic)

48 / 75

What is a Logical Argument?

3. The Support Set Need Not Be Minimal

Mathematical proofs need not be based on minimal assumptions.

Minimality may not be desirable (e.g., for majority votes).

{p,q} is a stronger support for p ∨ q than only {p} (or {q}).

4. The Support Set Need Not Be Consistent

Paraconsistent logics properly handle inconsistent information.

Computational considerations: Deciding the existence of a
minimally consistent subset of formulas implying a consequent is
at the second level of the polynomial hierarchy.

49 / 75

What is a Logical Argument?

3. The Support Set Need Not Be Minimal

Mathematical proofs need not be based on minimal assumptions.

Minimality may not be desirable (e.g., for majority votes).

{p,q} is a stronger support for p ∨ q than only {p} (or {q}).

4. The Support Set Need Not Be Consistent

Paraconsistent logics properly handle inconsistent information.

Computational considerations: Deciding the existence of a
minimally consistent subset of formulas implying a consequent is
at the second level of the polynomial hierarchy.

49 / 75

What is a Logical Argument?

Thus, what really matters for an argument, is that

its consequent would logically follow from the support set, and

there would be an effective way of constructing and identifying it.

Arguments are syntactical objects that are

effectively computable by a formal proof system (logic related)

refutable by the attack relation of the argumentation system.

A proper way of representing logical arguments is by
(the proof theoretical notion of) sequents.

Gentzen, G.: Untersuchungen über das logische Schliessen. Mathematische Zeitschrift 39:176–210, 1934

50 / 75

What is a Logical Argument?

Thus, what really matters for an argument, is that

its consequent would logically follow from the support set, and

there would be an effective way of constructing and identifying it.

Arguments are syntactical objects that are

effectively computable by a formal proof system (logic related)

refutable by the attack relation of the argumentation system.

A proper way of representing logical arguments is by
(the proof theoretical notion of) sequents.

Gentzen, G.: Untersuchungen über das logische Schliessen. Mathematische Zeitschrift 39:176–210, 1934
50 / 75

Arguments as Sequents

A proof-theoretic view of arguments:

Given a logic L = 〈L,`〉, logical arguments are defined as follows:
L-sequent : expression Γ⇒ ∆ (Γ,∆ – finite sets; ⇒ 6∈ L).
L-argument : L-sequent Γ⇒ ψ, where Γ ` ψ.
S-based L-argument : L-argument Γ⇒ ψ, where Γ ⊆ S.

Support : Γ = Sup(Γ⇒ ψ), Conclusion: ψ = Con(Γ⇒ ψ).
ArgL(S): the set of the S-based L-arguments

Example
L = CL (classical logic), S = {p,¬p,q}.
ArgCL(S) = {p ⇒ p p,q ⇒ p ∧ q ⇒ p ∨ ¬p p,¬p ⇒ q . . .}.

Gentzen, G.: Untersuchungen über das logische Schliessen. Mathematische Zeitschrift 39:176–210, 1934
51 / 75

Arguments as Sequents

A proof-theoretic view of arguments:

Given a logic L = 〈L,`〉, logical arguments are defined as follows:
L-sequent : expression Γ⇒ ∆ (Γ,∆ – finite sets; ⇒ 6∈ L).
L-argument : L-sequent Γ⇒ ψ, where Γ ` ψ.
S-based L-argument : L-argument Γ⇒ ψ, where Γ ⊆ S.

Support : Γ = Sup(Γ⇒ ψ), Conclusion: ψ = Con(Γ⇒ ψ).
ArgL(S): the set of the S-based L-arguments

Example
L = CL (classical logic), S = {p,¬p,q}.
ArgCL(S) = {p ⇒ p p,q ⇒ p ∧ q ⇒ p ∨ ¬p p,¬p ⇒ q . . .}.

Gentzen, G.: Untersuchungen über das logische Schliessen. Mathematische Zeitschrift 39:176–210, 1934
51 / 75

Arguments as Sequents

A proof-theoretic view of arguments:

Given a logic L = 〈L,`〉, logical arguments are defined as follows:
L-sequent : expression Γ⇒ ∆ (Γ,∆ – finite sets; ⇒ 6∈ L).
L-argument : L-sequent Γ⇒ ψ, where Γ ` ψ.
S-based L-argument : L-argument Γ⇒ ψ, where Γ ⊆ S.

Support : Γ = Sup(Γ⇒ ψ), Conclusion: ψ = Con(Γ⇒ ψ).
ArgL(S): the set of the S-based L-arguments

Example
L = CL (classical logic), S = {p,¬p,q}.
ArgCL(S) = {p ⇒ p p,q ⇒ p ∧ q ⇒ p ∨ ¬p p,¬p ⇒ q . . .}.

Gentzen, G.: Untersuchungen über das logische Schliessen. Mathematische Zeitschrift 39:176–210, 1934
51 / 75

Construction of Arguments

Standard sequent calculi are used to construct arguments from simpler
arguments, by means of inference rules:

Γ1 ⇒ ∆1 . . . Γn ⇒ ∆n
Γ⇒ ∆

Example (Rules taken from the sequent calculus LK for CL)
Γ⇒ ∆, ψ

Γ,¬ψ ⇒ ∆
(¬⇒)

Γ, ψ ⇒ ∆

Γ⇒ ∆,¬ψ (⇒¬)

Γ, ψ, ϕ⇒ ∆

Γ, ψ ∧ ϕ⇒ ∆
(∧⇒)

Γ⇒ φ,∆ Γ⇒ ψ,∆

Γ⇒ φ ∧ ψ,∆ (⇒∧)

Γ, ψ ⇒ ∆ Γ, ϕ⇒ ∆

Γ, ψ ∨ ϕ⇒ ∆
(∨⇒)

Γ⇒ ∆, ψ, ϕ

Γ⇒ ∆, ψ ∨ ϕ (⇒∨)

Γ⇒ ψ,∆ Γ, ϕ⇒ ∆

Γ, ψ ⊃ ϕ⇒ ∆
(⊃⇒)

Γ, ψ ⇒ ϕ,∆

Γ⇒ ψ ⊃ ϕ,∆ (⇒⊃)

52 / 75

Construction of Arguments

Standard sequent calculi are used to construct arguments from simpler
arguments, by means of inference rules:

Γ1 ⇒ ∆1 . . . Γn ⇒ ∆n
Γ⇒ ∆

Example (Rules taken from the sequent calculus LK for CL)
Γ⇒ ∆, ψ

Γ,¬ψ ⇒ ∆
(¬⇒)

Γ, ψ ⇒ ∆

Γ⇒ ∆,¬ψ (⇒¬)

Γ, ψ, ϕ⇒ ∆

Γ, ψ ∧ ϕ⇒ ∆
(∧⇒)

Γ⇒ φ,∆ Γ⇒ ψ,∆

Γ⇒ φ ∧ ψ,∆ (⇒∧)

Γ, ψ ⇒ ∆ Γ, ϕ⇒ ∆

Γ, ψ ∨ ϕ⇒ ∆
(∨⇒)

Γ⇒ ∆, ψ, ϕ

Γ⇒ ∆, ψ ∨ ϕ (⇒∨)

Γ⇒ ψ,∆ Γ, ϕ⇒ ∆

Γ, ψ ⊃ ϕ⇒ ∆
(⊃⇒)

Γ, ψ ⇒ ϕ,∆

Γ⇒ ψ ⊃ ϕ,∆ (⇒⊃)

52 / 75

Derivation Trees

A derivation tree in LK

ϕ⇒ ϕ

ϕ⇒ ¬ψ,ϕ [W]

⇒ ¬ψ,¬ϕ,ϕ [⇒¬]

⇒ ¬ψ ∨ ¬ϕ,ϕ [⇒∨]

ψ ⇒ ψ

ψ ⇒ ¬ϕ,ψ [W]

⇒ ¬ψ,¬ϕ,ψ [⇒¬]

⇒ ¬ψ ∨ ¬ϕ,ψ [⇒∨]

⇒ ¬ψ ∨ ¬ϕ,ψ ∧ ϕ [⇒∧]

¬(ψ ∧ ϕ)⇒ ¬ψ ∨ ¬ϕ [¬⇒]

⇒ ¬(ψ ∧ ϕ) ⊃ ¬ψ ∨ ¬ϕ [⇒⊃]

53 / 75

Attacks as Elimination Rules

Attacks (conflicts) between arguments are represented by sequent
elimination (attack) rules:

attacker︷ ︸︸ ︷
Γ1 ⇒ ∆1

conditions︷ ︸︸ ︷
. . .

attacked︷ ︸︸ ︷
Γn ⇒ ∆n

Γn 6⇒ ∆n︸ ︷︷ ︸
eliminated argument

Attack by Undercut
Γ1 ⇒ ψ1 ψ1 ⇒ ¬

∧
Γ′2 ¬

∧
Γ′2 ⇒ ψ1 Γ2, Γ

′
2 ⇒ ψ2

Γ2, Γ
′
2 6⇒ ψ2

Ucut

Example
L = CL, S = {p,¬p,q}.
The S-argument ¬p ⇒ ¬p Ucut-attacks the S-argument p ⇒ p, as well
as p,q ⇒ p ∧ q.

54 / 75

Attacks as Elimination Rules

Attacks (conflicts) between arguments are represented by sequent
elimination (attack) rules:

attacker︷ ︸︸ ︷
Γ1 ⇒ ∆1

conditions︷ ︸︸ ︷
. . .

attacked︷ ︸︸ ︷
Γn ⇒ ∆n

Γn 6⇒ ∆n︸ ︷︷ ︸
eliminated argument

Attack by Undercut
Γ1 ⇒ ψ1 ψ1 ⇒ ¬

∧
Γ′2 ¬

∧
Γ′2 ⇒ ψ1 Γ2, Γ

′
2 ⇒ ψ2

Γ2, Γ
′
2 6⇒ ψ2

Ucut

Example
L = CL, S = {p,¬p,q}.
The S-argument ¬p ⇒ ¬p Ucut-attacks the S-argument p ⇒ p, as well
as p,q ⇒ p ∧ q.

54 / 75

Attacks as Elimination Rules

Attacks (conflicts) between arguments are represented by sequent
elimination (attack) rules:

attacker︷ ︸︸ ︷
Γ1 ⇒ ∆1

conditions︷ ︸︸ ︷
. . .

attacked︷ ︸︸ ︷
Γn ⇒ ∆n

Γn 6⇒ ∆n︸ ︷︷ ︸
eliminated argument

Attack by Undercut
Γ1 ⇒ ψ1 ψ1 ⇒ ¬

∧
Γ′2 ¬

∧
Γ′2 ⇒ ψ1 Γ2, Γ

′
2 ⇒ ψ2

Γ2, Γ
′
2 6⇒ ψ2

Ucut

Example
L = CL, S = {p,¬p,q}.
The S-argument ¬p ⇒ ¬p Ucut-attacks the S-argument p ⇒ p, as well
as p,q ⇒ p ∧ q.

54 / 75

Some Common Attacks Rules

Undercut
Γ1 ⇒ ψ1 ψ1 ⇒ ¬

∧
Γ′2 ¬

∧
Γ′2 ⇒ ψ1 Γ2, Γ

′
2 ⇒ ψ2

Γ2, Γ
′
2 6⇒ ψ2

Ucut

Direct Undercut
Γ1 ⇒ ψ1 ψ1 ⇒ ¬γ2 ¬γ2 ⇒ ψ1 Γ2, γ2 ⇒ ψ2

Γ2, γ2 6⇒ ψ2
DirUcut

Defeat
Γ1 ⇒ ψ1 ψ1 ⇒ ¬

∧
Γ′2 Γ2, Γ

′
2 ⇒ ψ2

Γ2, Γ
′
2 6⇒ ψ2

Def

Direct Defeat
Γ1 ⇒ ψ1 ψ1 ⇒ ¬γ2 Γ2, γ2 ⇒ ψ2

Γ2, γ2 6⇒ ψ2
DirDef

55 / 75

Some Common Attacks Rules (Cont’d.)

Rebuttal
Γ1 ⇒ ψ1 ψ1 ⇒ ¬ψ2 ¬ψ2 ⇒ ψ1 Γ2 ⇒ ψ2

Γ2 6⇒ ψ2
Reb

Defeating Rebuttal
Γ1 ⇒ ψ1 ψ1 ⇒ ¬ψ2 Γ2 ⇒ ψ2

Γ2 6⇒ ψ2
DefReb

Consistency Undercut
⇒ ¬

∧
Γ2 Γ2, Γ

′
2 ⇒ ψ2

Γ2, Γ
′
2 6⇒ ψ2

ConUcut

56 / 75

Attacks Rules (Cont’d.)

Def

DirDefDirUcut

Ucut

Reb DefReb

ConUcut

An arrow fromR1 toR2 means thatR1 ⊆ R2.
57 / 75

Plan of Module 2

1 Motivation and Introduction

2 Abstract Argumentation Frameworks (AAFs)

Basic Definitions, Semantics

The Induced Entailments

Paraconsistent Semantics

3 Logical (Deductive) Argumentation Frameworks

4 Some Instantiations

Sequent-based Argumentation

ASPIC Systems

Assumption-based Argumentation

58 / 75

Sequent-based Argumentation Frameworks

A sequent-based argumentation framework for S, based on a logic L
and a set A of attack rules, is an abstract argumentation framework of
the form AF(S) = 〈ArgL(S),Attack(A)〉, where:

ArgL(S) is the set of the S-based L-arguments, and
(A1,A2) ∈ Attack(A) iff A1 R-attacks A2, for some R∈A.

Example
Part of the sequent-based logical argumentation framework for
S = {p,¬p,q}, based on classical logic and Undercut:

p,¬p ⇒ ¬q

p ⇒ p ¬p ⇒ ¬p

⇒ p ∨ ¬pq ⇒ q

O.Arieli, C.Straßer, Sequent-based logical argumentation, Argument and Computation 6(1):73–99, 2015.
59 / 75

Sequent-based Argumentation Frameworks

A sequent-based argumentation framework for S, based on a logic L
and a set A of attack rules, is an abstract argumentation framework of
the form AF(S) = 〈ArgL(S),Attack(A)〉, where:

ArgL(S) is the set of the S-based L-arguments, and
(A1,A2) ∈ Attack(A) iff A1 R-attacks A2, for some R∈A.

Example
Part of the sequent-based logical argumentation framework for
S = {p,¬p,q}, based on classical logic and Undercut:

p,¬p ⇒ ¬q

p ⇒ p ¬p ⇒ ¬p

⇒ p ∨ ¬pq ⇒ q

O.Arieli, C.Straßer, Sequent-based logical argumentation, Argument and Computation 6(1):73–99, 2015.
59 / 75

Dung-style Semantics, Revisited

Since sequent-based frameworks are a particular case of abstract
argumentation frameworks, Dung’s semantics is defined for them.

p,¬p ⇒ ¬q

p ⇒ p ¬p ⇒ ¬p

⇒ p ∨ ¬pq ⇒ q

S attacks an argument A if there is an s ∈ S such that s attacks A

S defends an argument A if S attacks every attacker of A
S is conflict-free if S does not attack any of its arguments
S is an admissible extension if it is conflict-free and defends all its
arguments
S is a complete extension if it is admissible and contains all the
arguments that it defends

60 / 75

Dung-style Semantics, Revisited

Since sequent-based frameworks are a particular case of abstract
argumentation frameworks, Dung’s semantics is defined for them.

p,¬p ⇒ ¬q

p ⇒ p ¬p ⇒ ¬p

⇒ p ∨ ¬pq ⇒ q

S attacks an argument A if there is an s ∈ S such that s attacks A
S defends an argument A if S attacks every attacker of A

S is conflict-free if S does not attack any of its arguments
S is an admissible extension if it is conflict-free and defends all its
arguments
S is a complete extension if it is admissible and contains all the
arguments that it defends

60 / 75

Dung-style Semantics, Revisited

Since sequent-based frameworks are a particular case of abstract
argumentation frameworks, Dung’s semantics is defined for them.

p,¬p ⇒ ¬q

p ⇒ p ¬p ⇒ ¬p

⇒ p ∨ ¬pq ⇒ q

S attacks an argument A if there is an s ∈ S such that s attacks A
S defends an argument A if S attacks every attacker of A
S is conflict-free if S does not attack any of its arguments

S is an admissible extension if it is conflict-free and defends all its
arguments
S is a complete extension if it is admissible and contains all the
arguments that it defends

60 / 75

Dung-style Semantics, Revisited

Since sequent-based frameworks are a particular case of abstract
argumentation frameworks, Dung’s semantics is defined for them.

p,¬p ⇒ ¬q

p ⇒ p ¬p ⇒ ¬p

⇒ p ∨ ¬pq ⇒ q

S attacks an argument A if there is an s ∈ S such that s attacks A
S defends an argument A if S attacks every attacker of A
S is conflict-free if S does not attack any of its arguments
S is an admissible extension if it is conflict-free and defends all its
arguments

S is a complete extension if it is admissible and contains all the
arguments that it defends

60 / 75

Dung-style Semantics, Revisited

Since sequent-based frameworks are a particular case of abstract
argumentation frameworks, Dung’s semantics is defined for them.

p,¬p ⇒ ¬q

p ⇒ p ¬p ⇒ ¬p

⇒ p ∨ ¬pq ⇒ q

S attacks an argument A if there is an s ∈ S such that s attacks A
S defends an argument A if S attacks every attacker of A
S is conflict-free if S does not attack any of its arguments
S is an admissible extension if it is conflict-free and defends all its
arguments
S is a complete extension if it is admissible and contains all the
arguments that it defends

60 / 75

Dung-style Semantics, Revisited

Since sequent-based frameworks are a particular case of abstract
argumentation frameworks, Dung’s semantics is defined for them.

p,¬p ⇒ ¬q

p ⇒ p ¬p ⇒ ¬p

⇒ p ∨ ¬pq ⇒ q

S is an admissible extension if it is conflict-free and defends all its
arguments
S is a complete extension if it is admissible and contains all the
arguments that it defends
a preferred extension is a maximal complete extension
a stable extension is a complete extension which attacks all
arguments not in it
the grounded extension is the minimal complete extension

60 / 75

Dung-style Semantics, Revisited

Since sequent-based frameworks are a particular case of abstract
argumentation frameworks, Dung’s semantics is defined for them.

p,¬p ⇒ ¬q

p ⇒ p ¬p ⇒ ¬p

⇒ p ∨ ¬pq ⇒ q

S is an admissible extension if it is conflict-free and defends all its
arguments
S is a complete extension if it is admissible and contains all the
arguments that it defends
a preferred extension is a maximal complete extension
a stable extension is a complete extension which attacks all
arguments not in it
the grounded extension is the minimal complete extension

60 / 75

Dung-style Semantics, Revisited

Since sequent-based frameworks are a particular case of abstract
argumentation frameworks, Dung’s semantics is defined for them.

p,¬p ⇒ ¬q

p ⇒ p ¬p ⇒ ¬p

⇒ p ∨ ¬pq ⇒ q

S is an admissible extension if it is conflict-free and defends all its
arguments
S is a complete extension if it is admissible and contains all the
arguments that it defends
a preferred extension is a maximal complete extension
a stable extension is a complete extension which attacks all
arguments not in it
the grounded extension is the minimal complete extension

60 / 75

Dung-style Semantics, Revisited

Since sequent-based frameworks are a particular case of abstract
argumentation frameworks, Dung’s semantics is defined for them.

p,¬p ⇒ ¬q

p ⇒ p ¬p ⇒ ¬p

⇒ p ∨ ¬pq ⇒ q

S is an admissible extension if it is conflict-free and defends all its
arguments
S is a complete extension if it is admissible and contains all the
arguments that it defends
a preferred extension is a maximal complete extension
a stable extension is a complete extension which attacks all
arguments not in it
the grounded extension is the minimal complete extension

60 / 75

Dung-style Semantics, Revisited

Since sequent-based frameworks are a particular case of abstract
argumentation frameworks, Dung’s semantics is defined for them.

p,¬p ⇒ ¬q

p ⇒ p ¬p ⇒ ¬p

⇒ p ∨ ¬pq ⇒ q

S is an admissible extension if it is conflict-free and defends all its
arguments
S is a complete extension if it is admissible and contains all the
arguments that it defends
a preferred extension is a maximal complete extension
a stable extension is a complete extension which attacks all
arguments not in it
the grounded extension is the minimal complete extension

60 / 75

Another Example

L = CL, R = {DirDef,ConUcut}, S = {p,q,¬p ∨ ¬q, r}
A1 = r ⇒ r A4 = ¬p ∨ ¬q ⇒ ¬p ∨ ¬q A7 = p,q ⇒ p ∧ q
A2 = p ⇒ p A5 = p ⇒ ¬((¬p ∨ ¬q) ∧ q) A8 = ¬p ∨ ¬q,q ⇒ ¬p
A3 = q ⇒ q A6 = q ⇒ ¬((¬p ∨ ¬q) ∧ p) A9 = ¬p ∨ ¬q,p ⇒ ¬q

A> =⇒ ¬(p ∧ q ∧ (¬p ∨ ¬q)) A⊥= p,q,¬p ∨ ¬q ⇒ ¬r

A1A2

A3

A4

A5

A6

A7

A8

A9

A⊥ A>

61 / 75

Another Example

L = CL, R = {DirDef,ConUcut}, S = {p,q,¬p ∨ ¬q, r}
A1 = r ⇒ r A4 = ¬p ∨ ¬q ⇒ ¬p ∨ ¬q A7 = p,q ⇒ p ∧ q
A2 = p ⇒ p A5 = p ⇒ ¬((¬p ∨ ¬q) ∧ q) A8 = ¬p ∨ ¬q,q ⇒ ¬p
A3 = q ⇒ q A6 = q ⇒ ¬((¬p ∨ ¬q) ∧ p) A9 = ¬p ∨ ¬q,p ⇒ ¬q

A> =⇒ ¬(p ∧ q ∧ (¬p ∨ ¬q)) A⊥= p,q,¬p ∨ ¬q ⇒ ¬r

A1A2

A3

A4

A5

A6

A7

A8

A9

A⊥ A>

3 preferred/stable extensions
61 / 75

Another Example

L = CL, R = {DirDef,ConUcut}, S = {p,q,¬p ∨ ¬q, r}
A1 = r ⇒ r A4 = ¬p ∨ ¬q ⇒ ¬p ∨ ¬q A7 = p,q ⇒ p ∧ q
A2 = p ⇒ p A5 = p ⇒ ¬((¬p ∨ ¬q) ∧ q) A8 = ¬p ∨ ¬q,q ⇒ ¬p
A3 = q ⇒ q A6 = q ⇒ ¬((¬p ∨ ¬q) ∧ p) A9 = ¬p ∨ ¬q,p ⇒ ¬q

A> =⇒ ¬(p ∧ q ∧ (¬p ∨ ¬q)) A⊥= p,q,¬p ∨ ¬q ⇒ ¬r

A1A2

A3

A4

A5

A6

A7

A8

A9

A⊥ A>

3 preferred/stable extensions
61 / 75

Another Example

L = CL, R = {DirDef,ConUcut}, S = {p,q,¬p ∨ ¬q, r}
A1 = r ⇒ r A4 = ¬p ∨ ¬q ⇒ ¬p ∨ ¬q A7 = p,q ⇒ p ∧ q
A2 = p ⇒ p A5 = p ⇒ ¬((¬p ∨ ¬q) ∧ q) A8 = ¬p ∨ ¬q,q ⇒ ¬p
A3 = q ⇒ q A6 = q ⇒ ¬((¬p ∨ ¬q) ∧ p) A9 = ¬p ∨ ¬q,p ⇒ ¬q

A> =⇒ ¬(p ∧ q ∧ (¬p ∨ ¬q)) A⊥= p,q,¬p ∨ ¬q ⇒ ¬r

A1A2

A3

A4

A5

A6

A7

A8

A9

A⊥ A>

3 preferred/stable extensions
61 / 75

Incorporation of Modalities

L = S4, R = {DirDef}, KB = {p, q, p⊃2r , q⊃2¬r}

A1 = p ⇒ p A3 = p,p⊃2r ⇒ 2r A6 = p,q,p⊃2r ⇒ ¬(q⊃2¬r)

A2 = q ⇒ q A4 = q,q⊃2¬r ⇒ 2¬r A7 = p,q,q⊃2¬r ⇒ ¬(p⊃2r)

A5 = p,p⊃2r ,q⊃2¬r ⇒ ¬q A8 = q,p⊃2r ,q⊃2¬r ⇒ ¬p

A1

A2

A3A4

A5

A6 A7

A8

62 / 75

Incorporation of Modalities

L = S4, R = {DirDef}, KB = {p, q, p⊃2r , q⊃2¬r}

A1 = p ⇒ p A3 = p,p⊃2r ⇒ 2r A6 = p,q,p⊃2r ⇒ ¬(q⊃2¬r)

A2 = q ⇒ q A4 = q,q⊃2¬r ⇒ 2¬r A7 = p,q,q⊃2¬r ⇒ ¬(p⊃2r)

A5 = p,p⊃2r ,q⊃2¬r ⇒ ¬q A8 = q,p⊃2r ,q⊃2¬r ⇒ ¬p

A1

A2

A3A4

A5

A6 A7

A8

4 prf/stb extensions

62 / 75

Incorporation of Modalities

L = S4, R = {DirDef}, KB = {p, q, p⊃2r , q⊃2¬r}

A1 = p ⇒ p A3 = p,p⊃2r ⇒ 2r A6 = p,q,p⊃2r ⇒ ¬(q⊃2¬r)

A2 = q ⇒ q A4 = q,q⊃2¬r ⇒ 2¬r A7 = p,q,q⊃2¬r ⇒ ¬(p⊃2r)

A5 = p,p⊃2r ,q⊃2¬r ⇒ ¬q A8 = q,p⊃2r ,q⊃2¬r ⇒ ¬p

A1

A2

A3A4

A5

A6 A7

A8

4 prf/stb extensions

62 / 75

Incorporation of Modalities

L = S4, R = {DirDef}, KB = {p, q, p⊃2r , q⊃2¬r}

A1 = p ⇒ p A3 = p,p⊃2r ⇒ 2r A6 = p,q,p⊃2r ⇒ ¬(q⊃2¬r)

A2 = q ⇒ q A4 = q,q⊃2¬r ⇒ 2¬r A7 = p,q,q⊃2¬r ⇒ ¬(p⊃2r)

A5 = p,p⊃2r ,q⊃2¬r ⇒ ¬q A8 = q,p⊃2r ,q⊃2¬r ⇒ ¬p

A1

A2

A3A4

A5

A6 A7

A8

4 prf/stb extensions

62 / 75

Incorporation of Modalities

L = S4, R = {DirDef}, KB = {p, q, p⊃2r , q⊃2¬r}

A1 = p ⇒ p A3 = p,p⊃2r ⇒ 2r A6 = p,q,p⊃2r ⇒ ¬(q⊃2¬r)

A2 = q ⇒ q A4 = q,q⊃2¬r ⇒ 2¬r A7 = p,q,q⊃2¬r ⇒ ¬(p⊃2r)

A5 = p,p⊃2r ,q⊃2¬r ⇒ ¬q A8 = q,p⊃2r ,q⊃2¬r ⇒ ¬p

A1

A2

A3A4

A5

A6 A7

A8

4 prf/stb extensions

62 / 75

Incorporation of Modalities (2)

Example (Horty, 1994)

When a meal is served (m), one should not eat with fingers (f).
However, if the meal is asparagus (a), one should eat with fingers.

Representation by a sequent-based AF:

L = SDL (standard deontic logic, i.e., the normal modal logic KD),
where the modal operator O intuitively represents obligations.
S = {m, a, m ⊃ O¬f , (m ∧ a) ⊃ Of}.
R = ?

This is a paradigmatic case of specificity : a more specific obligation
cancels (or overrides) a less specific obligation.

Specificity Undercut
Γ, φ ⊃ Oψ ⇒ ¬(φ′ ⊃ Oψ′) Γ ` φ φ ` φ′ ψ ` ¬ψ′ Γ′, φ′ ⊃ Oψ′ ⇒ σ

Γ′, φ′ ⊃ Oψ′ 6⇒ σ

J. Horty. Moral dilemmas and nonmonotonic logic, Journal of Philosophical Logic, 23:35–65, 1994.
63 / 75

Incorporation of Modalities (2)

Example (Horty, 1994)

When a meal is served (m), one should not eat with fingers (f).
However, if the meal is asparagus (a), one should eat with fingers.

Representation by a sequent-based AF:

L = SDL (standard deontic logic, i.e., the normal modal logic KD),
where the modal operator O intuitively represents obligations.
S = {m, a, m ⊃ O¬f , (m ∧ a) ⊃ Of}.
R = ?

This is a paradigmatic case of specificity : a more specific obligation
cancels (or overrides) a less specific obligation.

Specificity Undercut
Γ, φ ⊃ Oψ ⇒ ¬(φ′ ⊃ Oψ′) Γ ` φ φ ` φ′ ψ ` ¬ψ′ Γ′, φ′ ⊃ Oψ′ ⇒ σ

Γ′, φ′ ⊃ Oψ′ 6⇒ σ

J. Horty. Moral dilemmas and nonmonotonic logic, Journal of Philosophical Logic, 23:35–65, 1994.
63 / 75

Incorporation of Modalities (2)

Example (Horty, 1994)

When a meal is served (m), one should not eat with fingers (f).
However, if the meal is asparagus (a), one should eat with fingers.

Representation by a sequent-based AF:

L = SDL (standard deontic logic, i.e., the normal modal logic KD),
where the modal operator O intuitively represents obligations.
S = {m, a, m ⊃ O¬f , (m ∧ a) ⊃ Of}.
R = ?

This is a paradigmatic case of specificity : a more specific obligation
cancels (or overrides) a less specific obligation.

Specificity Undercut
Γ, φ ⊃ Oψ ⇒ ¬(φ′ ⊃ Oψ′) Γ ` φ φ ` φ′ ψ ` ¬ψ′ Γ′, φ′ ⊃ Oψ′ ⇒ σ

Γ′, φ′ ⊃ Oψ′ 6⇒ σ

J. Horty. Moral dilemmas and nonmonotonic logic, Journal of Philosophical Logic, 23:35–65, 1994.
63 / 75

Entailments Induced by Sequent-based AFs

AF(S) = 〈ArgL(S),Attack(A)〉 – A sequent-based AF
Sem(AF(S)) – The Sem-extensions of AF(S)
(Sem ∈ {Cmp,Grd,Prf,Stb,SStb}).

S |∼∩L,A,sem ψ if ∃A ∈
⋂

Sem(AF(S)) with Conc(A) = ψ

S |∼e
L,A,sem ψ if ∀E ∈ Sem(AF(S)) ∃A ∈ E with Conc(A) = ψ

S |∼∪L,A,sem ψ if ∃A ∈
⋃

Sem(AF(S)) with Conc(A) = ψ

p,¬p ⇒ ¬q

p ⇒ p ¬p ⇒ ¬p

⇒ p ∨ ¬pq ⇒ q

Thus, for every ? ∈ {∩,e,∪},
{p,¬p,q} |∼?

CL,{Ucut},grd p ∨¬p and {p,¬p,q} |∼?
CL,{Ucut},grd q

(but {p,¬p,q} 6|∼?
CL,{Ucut},grd p and {p,¬p,q} 6|∼?

CL,{Ucut},grd ¬p).

64 / 75

Entailments Induced by Sequent-based AFs

AF(S) = 〈ArgL(S),Attack(A)〉 – A sequent-based AF
Sem(AF(S)) – The Sem-extensions of AF(S)
(Sem ∈ {Cmp,Grd,Prf,Stb,SStb}).

S |∼∩L,A,sem ψ if ∃A ∈
⋂

Sem(AF(S)) with Conc(A) = ψ

S |∼e
L,A,sem ψ if ∀E ∈ Sem(AF(S)) ∃A ∈ E with Conc(A) = ψ

S |∼∪L,A,sem ψ if ∃A ∈
⋃

Sem(AF(S)) with Conc(A) = ψ

p,¬p ⇒ ¬q

p ⇒ p ¬p ⇒ ¬p

⇒ p ∨ ¬pq ⇒ q

Thus, for every ? ∈ {∩,e,∪},
{p,¬p,q} |∼?

CL,{Ucut},grd p ∨¬p and {p,¬p,q} |∼?
CL,{Ucut},grd q

(but {p,¬p,q} 6|∼?
CL,{Ucut},grd p and {p,¬p,q} 6|∼?

CL,{Ucut},grd ¬p).
64 / 75

Entailments Induced by Sequent-based AFs (Cont’d.)

Example (Horty’s asparagus dilemma)
m, a, m ⊃ O¬f , (m ∧ a) ⊃ Of |∼?

SDL,{SpecUcut},sem Of
m, a, m ⊃ O¬f , (m ∧ a) ⊃ Of |6∼?

SDL,{SpecUcut},sem O¬f

for every ? ∈ {∩,e,∪} and Sem ∈ {cmp,grd,prf, stb, sstb}.

Notes:
S |∼∩L,A,sem ψ implies S |∼e

L,A,sem ψ implies S |∼∪L,A,sem ψ.
The converse is not true (in both implications)

Example
Let S = {p ∧ q,¬p ∧ q}, L = CL, A = {DirUcut}.

Prf(AF(S)) = Stb(AF(S)) = {ArgCL(p ∧ q) , ArgCL(¬p ∧ q)}.

S |∼∪L,A,sem p but S 6|∼e
L,A,sem p, S |∼e

L,A,sem q but S 6|∼∩L,A,sem q.

Properties of the entailments will be discussed later.

65 / 75

Entailments Induced by Sequent-based AFs (Cont’d.)

Example (Horty’s asparagus dilemma)
m, a, m ⊃ O¬f , (m ∧ a) ⊃ Of |∼?

SDL,{SpecUcut},sem Of
m, a, m ⊃ O¬f , (m ∧ a) ⊃ Of |6∼?

SDL,{SpecUcut},sem O¬f

for every ? ∈ {∩,e,∪} and Sem ∈ {cmp,grd,prf, stb, sstb}.

Notes:
S |∼∩L,A,sem ψ implies S |∼e

L,A,sem ψ implies S |∼∪L,A,sem ψ.
The converse is not true (in both implications)

Example
Let S = {p ∧ q,¬p ∧ q}, L = CL, A = {DirUcut}.

Prf(AF(S)) = Stb(AF(S)) = {ArgCL(p ∧ q) , ArgCL(¬p ∧ q)}.

S |∼∪L,A,sem p but S 6|∼e
L,A,sem p, S |∼e

L,A,sem q but S 6|∼∩L,A,sem q.

Properties of the entailments will be discussed later.

65 / 75

Entailments Induced by Sequent-based AFs (Cont’d.)

Example (Horty’s asparagus dilemma)
m, a, m ⊃ O¬f , (m ∧ a) ⊃ Of |∼?

SDL,{SpecUcut},sem Of
m, a, m ⊃ O¬f , (m ∧ a) ⊃ Of |6∼?

SDL,{SpecUcut},sem O¬f

for every ? ∈ {∩,e,∪} and Sem ∈ {cmp,grd,prf, stb, sstb}.

Notes:
S |∼∩L,A,sem ψ implies S |∼e

L,A,sem ψ implies S |∼∪L,A,sem ψ.
The converse is not true (in both implications)

Example
Let S = {p ∧ q,¬p ∧ q}, L = CL, A = {DirUcut}.

Prf(AF(S)) = Stb(AF(S)) = {ArgCL(p ∧ q) , ArgCL(¬p ∧ q)}.

S |∼∪L,A,sem p but S 6|∼e
L,A,sem p, S |∼e

L,A,sem q but S 6|∼∩L,A,sem q.

Properties of the entailments will be discussed later.

65 / 75

Entailments Induced by Sequent-based AFs (Cont’d.)

Example (Horty’s asparagus dilemma)
m, a, m ⊃ O¬f , (m ∧ a) ⊃ Of |∼?

SDL,{SpecUcut},sem Of
m, a, m ⊃ O¬f , (m ∧ a) ⊃ Of |6∼?

SDL,{SpecUcut},sem O¬f

for every ? ∈ {∩,e,∪} and Sem ∈ {cmp,grd,prf, stb, sstb}.

Notes:
S |∼∩L,A,sem ψ implies S |∼e

L,A,sem ψ implies S |∼∪L,A,sem ψ.
The converse is not true (in both implications)

Example
Let S = {p ∧ q,¬p ∧ q}, L = CL, A = {DirUcut}.

Prf(AF(S)) = Stb(AF(S)) = {ArgCL(p ∧ q) , ArgCL(¬p ∧ q)}.

S |∼∪L,A,sem p but S 6|∼e
L,A,sem p, S |∼e

L,A,sem q but S 6|∼∩L,A,sem q.

Properties of the entailments will be discussed later.
65 / 75

Plan of Module 2

1 Motivation and Introduction

2 Abstract Argumentation Frameworks (AAFs)

Basic Definitions, Semantics

The Induced Entailments

Paraconsistent Semantics

3 Logical (Deductive) Argumentation Frameworks

4 Some Instantiations

Sequent-based Argumentation

ASPIC Systems

Assumption-based Argumentation

66 / 75

ASPIC Systems (Informal Presentation)

Some Basic Principles

Argumentation based on deductive arguments
(similar to sequent-based argumentation).

The background knowledge consists of strict (non-attackable)
assumptions and defeasible (attackable) assumptions.

Derivations are based on strict (deductively valid) and defeasible
(presumptive) rules.

Arguments are of the form 〈Γ, ψ〉, where the support Γ is a
tree-structured derivation of ψ (using the available rules).

Attacks on the defeasible rules in the support.

Standard Dung-style semantics on the induced AF.

S. Modgil, H. Prakken, Abstract rule-based argumentation, Handbook of Formal Argumentation, Vol.I, pp.287–364, 2018.
67 / 75

ASPIC Systems – Intuition and Motivation

(Taken from S. Modgil amd H. Prakken, “Abstract rule-based argumentation”, Handbook of Formal Argumentation Vol.I:287--364, 2018)

We saw John in
Holland Park

John was in
Holland Park

a defeasible rule
(based on our senses)

Holland Park is in
London

John was in
London

a strict rule
(based on a valid inference)

John was in
Amsterdam

David says he
saw John in
Amsterdam

John is a suspect
in a robbery

in Holland Park

David and John
are friend

David has reason
to lie

68 / 75

ASPIC Systems – A More Detailed Example

(Taken from S. Modgil amd H. Prakken, “Abstract rule-based argumentation”, Handbook of Formal Argumentation Vol.I:287--364, 2018)

Strict premises = {p} , Defeasible premises = {s,u,x}

Strict rules = {s1 : p,qr, s2 : vs}

Defeasible rules ={ d1 : pq, d2 : st, d3 : td1, d4 : uv, d5 : v,xt }

r

p q

p

d1

s1

t

s

d2

d1

d3

v

u

d4

s

s2

t

v x

u

d4

d2

69 / 75

ASPIC Systems – A More Detailed Example (Cont’d.)

(Taken from S. Modgil amd H. Prakken, “Abstract rule-based argumentation”, Handbook of Formal Argumentation Vol.I:287--364, 2018)

Strict premises = {p} , Defeasible premises = {s,u,x}

Strict rules = {s1 : p,qr, s2 : vs}

Defeasible rules ={ d1 : pq, d2 : st, d3 : td1, d4 : uv, d5 : v,xt }

r

p q

p

d1

s1

t

s

d2

d1

d3

v

u

d4

s

s2

t

v x

u

d4

d2

70 / 75

Plan of Module 2

1 Motivation and Introduction

2 Abstract Argumentation Frameworks (AAFs)

Basic Definitions, Semantics

The Induced Entailments

Paraconsistent Semantics

3 Logical (Deductive) Argumentation Frameworks

4 Some Instantiations

Sequent-based Argumentation

ASPIC Systems

Assumption-based Argumentation

71 / 75

Assumption-Based Argumentation (ABA)

Basic Idea: ABA systems operate on sets of assumptions (formulas)
rather than individual arguments. This may be viewed as a higher level
of abstraction, operating on equivalence classes that consist of
arguments generated from the same assumptions.

An assumption-based framework is a tuple ABF = 〈L, Γ,∆,∼〉, s.t.:
L is a (propositional) language,
Γ is a set of strict rules of the form ψ1, . . . , ψn → ψ,
∆ is a set of L-formulas, called the defeasible assumptions,
∼ : ∆→ 2L is a contrariness operator .

S ` ψ if there is a Γ-deduction based on S ⊆ ∆ that culminates in ψ.

S attacks ψ if there are S ′ ⊆ S and φ ∈ ∼ψ such that S ′ ` φ.

S ⊆ ∆ attacks T ⊆ ∆ if S attacks some ψ ∈ T .

K. Cyras, X. Fan, C. Schulz., F. Toni. Assumption-based argumentation: Disputes, explanations, preferences, Handbook of
Formal Argumentation, Vol.I, pp.365–408, 2018.

72 / 75

Assumption-Based Argumentation (ABA)

Basic Idea: ABA systems operate on sets of assumptions (formulas)
rather than individual arguments. This may be viewed as a higher level
of abstraction, operating on equivalence classes that consist of
arguments generated from the same assumptions.

An assumption-based framework is a tuple ABF = 〈L, Γ,∆,∼〉, s.t.:
L is a (propositional) language,
Γ is a set of strict rules of the form ψ1, . . . , ψn → ψ,
∆ is a set of L-formulas, called the defeasible assumptions,
∼ : ∆→ 2L is a contrariness operator .

S ` ψ if there is a Γ-deduction based on S ⊆ ∆ that culminates in ψ.

S attacks ψ if there are S ′ ⊆ S and φ ∈ ∼ψ such that S ′ ` φ.

S ⊆ ∆ attacks T ⊆ ∆ if S attacks some ψ ∈ T .

K. Cyras, X. Fan, C. Schulz., F. Toni. Assumption-based argumentation: Disputes, explanations, preferences, Handbook of
Formal Argumentation, Vol.I, pp.365–408, 2018.

72 / 75

Assumption-Based Argumentation (ABA)

Basic Idea: ABA systems operate on sets of assumptions (formulas)
rather than individual arguments. This may be viewed as a higher level
of abstraction, operating on equivalence classes that consist of
arguments generated from the same assumptions.

An assumption-based framework is a tuple ABF = 〈L, Γ,∆,∼〉, s.t.:
L is a (propositional) language,
Γ is a set of strict rules of the form ψ1, . . . , ψn → ψ,
∆ is a set of L-formulas, called the defeasible assumptions,
∼ : ∆→ 2L is a contrariness operator .

S ` ψ if there is a Γ-deduction based on S ⊆ ∆ that culminates in ψ.

S attacks ψ if there are S ′ ⊆ S and φ ∈ ∼ψ such that S ′ ` φ.

S ⊆ ∆ attacks T ⊆ ∆ if S attacks some ψ ∈ T .

K. Cyras, X. Fan, C. Schulz., F. Toni. Assumption-based argumentation: Disputes, explanations, preferences, Handbook of
Formal Argumentation, Vol.I, pp.365–408, 2018.

72 / 75

Assumption-Based Argumentation, Cont’d.

Example

{}{q}{p,¬p,q}

{p}

{¬p}

{p,q}

{¬p,q}

Attack diagram for 〈L, Γ,∆,∼〉
∆ = {p,¬p, q}, Γ = {x → x ; p,¬p → x | x ∈ ∆}, ∼ψ = {¬ψ}

Let ABF = 〈L, Γ,∆,∼〉 and S ⊆ ∆

S is ∆-closed if: S = ∆ ∩ {ψ | S ` ψ}
S is conflict-free iff it does not attack itself.
S defends a set S ′ ⊆ ∆ iff for every closed set S ′′ that attacks S ′,
S attacks S ′′.
S is admissible iff it is closed, conflict-free, and defends itself.
An admissible set is complete if it does not defend any of its
proper supersets (grd, prf, stb, sstb, etc. are defined as usual).

73 / 75

Assumption-Based Argumentation, Cont’d.

Example

{}{q}{p,¬p,q}

{p}

{¬p}

{p,q}

{¬p,q}

Attack diagram for 〈L, Γ,∆,∼〉
∆ = {p,¬p, q}, Γ = {x → x ; p,¬p → x | x ∈ ∆}, ∼ψ = {¬ψ}

Let ABF = 〈L, Γ,∆,∼〉 and S ⊆ ∆

S is ∆-closed if: S = ∆ ∩ {ψ | S ` ψ}
S is conflict-free iff it does not attack itself.
S defends a set S ′ ⊆ ∆ iff for every closed set S ′′ that attacks S ′,
S attacks S ′′.
S is admissible iff it is closed, conflict-free, and defends itself.
An admissible set is complete if it does not defend any of its
proper supersets (grd, prf, stb, sstb, etc. are defined as usual).

73 / 75

Assumption-Based Argumentation, Cont’d.

Example

{}{q}{p,¬p,q}

{p}

{¬p}

{p,q}

{¬p,q}

Attack diagram for 〈L, Γ,∆,∼〉
∆ = {p,¬p, q}, Γ = {x → x ; p,¬p → x | x ∈ ∆}, ∼ψ = {¬ψ}

Prf(ABF) = Stb(ABF) = {{p,q}, {¬p,q}}

p,¬p,q 6|∼?
sem p and p,¬p,q 6|∼?

sem ¬p, while p,¬p,q |∼?
sem q

for every ? ∈ {∪,∩,e} and sem ∈ {Prf,Stb}.

74 / 75

Some Relations Among The Formalisms
(To be discussed also in Module 5)

Sequent-based
Argumentation

ABA ASPIC

Autoepistemic
Logic

Adaptive Logic

Default Logic

Logic
Programming

[Bo20] Borg. IfCoLog Journal of Logics and their Applications 7(3):227-294, 2020.

[HS21] Heyninck, Strasser. IfCoLog Journal of Logics and their Applications 8(3):783-808, 2021.

[Pr11] Prakken. Argument and Computation, 1(2):93-124, 2011.

Overview: Arieli, Borg, Heyninck, Strasser. IfCoLog Journal of Logics and their Applications 8(6):1793-1898, 2021.

 [Pr11]

 [HS21]

[Bo20] [Bo20]

75 / 75

