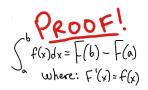
Argumentation-based Approaches to Paraconsistency SPLogIC, CLE Unicamp, Feb. 2023 (Ofer Arieli)

Module 4

Proof Methods



Plan of Module 4

General Introduction

- Proof systems
- Sequent calculi
- Proof Systems for Logic-Based Argumentation
 - Dynamic proof systems
 - Annotation-based systems
 - Other approaches

Proof Systems

1

We shall use proof systems for two purposes:

- Constructing arguments in $\operatorname{Arg}_{\mathfrak{L}}(S)$ for a given base logic $\mathfrak{L} = \langle \mathcal{L}, \vdash \rangle$ and a set S of assumptions.

We shall use proof systems for two purposes:

- Constructing arguments in Arg_ℓ(S) for a given base logic £ = ⟨L,⊢⟩ and a set S of assumptions.

Purpose 1 may be realized by different types of 'standard' proof systems (Hilbert-style, Gentzen-style, Tableaux methods, etc.).

Here we incorporate systems that are based on sequent calculi.¹

¹Or hypersequent calculi, when arguments are represented by hypersequents.

We shall use proof systems for two purposes:

- Constructing arguments in $\operatorname{Arg}_{\mathfrak{L}}(S)$ for a given base logic $\mathfrak{L} = \langle \mathcal{L}, \vdash \rangle$ and a set S of assumptions.

Purpose 1 may be realized by different types of 'standard' proof systems (Hilbert-style, Gentzen-style, Tableaux methods, etc.).

Here we incorporate systems that are based on sequent calculi.¹

Purpose 2 is realized here by dynamic sequent calculi, allowing for non-monotonic derivation processes.

¹Or hypersequent calculi, when arguments are represented by hypersequents.

Example: The Sequent Calculus LK for CL

Axioms: $\psi \Rightarrow \psi$

Structural Rules:

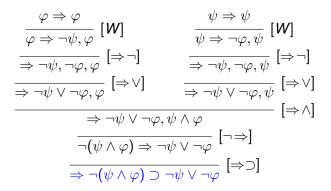
Weakening [W]:
$$\frac{\Gamma \Rightarrow \Delta}{\Gamma, \Gamma' \Rightarrow \Delta, \Delta'}$$
Cut [C]: $\frac{\Gamma_1, \psi \Rightarrow \Delta_1 \quad \Gamma_2 \Rightarrow \Delta_2, \psi}{\Gamma_1, \Gamma_2 \Rightarrow \Delta_1, \Delta_2}$

Logical Rules:

$$\begin{split} & [\wedge \Rightarrow] \quad \frac{\Gamma, \psi, \varphi \Rightarrow \Delta}{\Gamma, \psi \land \varphi \Rightarrow \Delta} & [\Rightarrow \land] \quad \frac{\Gamma \Rightarrow \Delta, \psi \quad \Gamma \Rightarrow \Delta, \varphi}{\Gamma \Rightarrow \Delta, \psi \land \varphi} \\ & [\vee \Rightarrow] \quad \frac{\Gamma, \psi \Rightarrow \Delta}{\Gamma, \psi \lor \varphi \Rightarrow \Delta} & [\Rightarrow \lor] \quad \frac{\Gamma \Rightarrow \Delta, \psi, \varphi}{\Gamma \Rightarrow \Delta, \psi \land \varphi} \\ & [\supset \Rightarrow] \quad \frac{\Gamma \Rightarrow \psi, \Delta}{\Gamma, \psi \supset \varphi \Rightarrow \Delta} & [\Rightarrow \supset] \quad \frac{\Gamma, \psi \Rightarrow \varphi, \Delta}{\Gamma \Rightarrow \psi \supset \varphi, \Delta} \\ & [\neg \Rightarrow] \quad \frac{\Gamma \Rightarrow \Delta, \psi}{\Gamma, \neg \psi \Rightarrow \Delta} & [\Rightarrow \neg] \quad \frac{\Gamma, \psi \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, \neg \psi} \end{split}$$

Derivations in LK

A derivation tree in LK of one side of one of De Morgan's laws:



- Each leaf (i.e., a most-upper line) of the tree contains an instance of the axiom schema of LK.
- The root (i.e. the bottom line) contains the proven sequent.
- Transitions from one node of the tree to another are justified by applications of the inference rules.

Another Example: Construction of Arguments in J_3^B

Recall (Module 1): $J_3^{\mathsf{B}} = \mathsf{PAC}^{\mathsf{F},\mathsf{B}} = \langle \{t, f, \top\}, \{t, \top\}, \{\tilde{\vee}, \tilde{\wedge}, \tilde{\supset}, \tilde{\neg}, \mathsf{F}, \mathsf{B}\} \rangle$

Another Example: Construction of Arguments in J_3^B

Recall (Module 1): $J_3^{\mathsf{B}} = \mathsf{PAC}^{\mathsf{F},\mathsf{B}} = \langle \{t, f, \top\}, \{t, \top\}, \{\tilde{\vee}, \tilde{\wedge}, \tilde{\supset}, \tilde{\neg}, \mathsf{F}, \mathsf{B}\} \rangle$

A sound & complete sequent calculus for J^B₃:

- LK without the negation rules,
- Additional axiom achema: $\Rightarrow \psi, \neg \psi$
- The following logical rules for \neg , F, and B:

$$\begin{array}{ll} [\neg \neg \Rightarrow] & \frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma, \neg \neg \varphi \Rightarrow \Delta} & [\Rightarrow \neg \neg] & \frac{\Gamma \Rightarrow \Delta, \varphi}{\Gamma \Rightarrow \Delta, \neg \neg \varphi} \\ [\neg \land \Rightarrow] & \frac{\Gamma, \neg \varphi \Rightarrow \Delta}{\Gamma, \neg (\varphi \land \psi) \Rightarrow \Delta} & [\Rightarrow \neg \land] & \frac{\Gamma \Rightarrow \Delta, \neg \varphi, \neg \psi}{\Gamma \Rightarrow \Delta, \neg (\varphi \land \psi)} \\ [\neg \lor \Rightarrow] & \frac{\Gamma, \neg \varphi, \neg \psi \Rightarrow \Delta}{\Gamma, \neg (\varphi \lor \psi) \Rightarrow \Delta} & [\Rightarrow \neg \lor] & \frac{\Gamma \Rightarrow \Delta, \neg \varphi, \neg \psi}{\Gamma \Rightarrow \Delta, \neg (\varphi \land \psi)} \\ [\neg \supset \Rightarrow] & \frac{\Gamma, \varphi, \neg \psi \Rightarrow \Delta}{\Gamma, \neg (\varphi \supset \psi) \Rightarrow \Delta} & [\Rightarrow \neg \bigcirc] & \frac{\Gamma \Rightarrow \varphi, \Delta}{\Gamma \Rightarrow \neg (\varphi \lor \psi)} \\ [F \Rightarrow] & \Gamma, F \Rightarrow \Delta & [\Rightarrow \neg F] & \Gamma \Rightarrow \Delta, \neg F \\ [\Rightarrow \neg B] & \Gamma \Rightarrow \Delta, \neg B \end{array}$$

• For a sound & complete calculus for $LP^{F,B}$, remove the rules for \supset .

Extension to 4All

$\mathsf{4AII} = \langle \{t, f, \top, \bot\}, \{t, \top\}, \{\tilde{\vee}, \tilde{\wedge}, \tilde{\oplus}, \tilde{\odot}, \tilde{\neg}, \mathsf{F}, \mathsf{B}, \mathsf{N}\} \rangle$

Extension to 4All

 $\mathsf{4All} = \langle \{t, f, \top, \bot\}, \{t, \top\}, \{\tilde{\vee}, \tilde{\wedge}, \tilde{\oplus}, \tilde{\otimes}, \tilde{\supset}, \tilde{\neg}, \mathsf{F}, \mathsf{B}, \mathsf{N}\} \rangle$

A sound & complete sequent calculus for 4All:

- The sequent calculus for J_3^B without the axioms: $\Rightarrow \psi, \neg \psi$
- The following logical rules for $-, \otimes, \oplus$, and N:

$$\begin{array}{ll} [-\Rightarrow] & \frac{\Gamma\Rightarrow\Delta,\neg\psi}{\Gamma,\neg\psi\Rightarrow\Delta} & [\Rightarrow-] & \frac{\Gamma,\neg\psi\Rightarrow\Delta}{\Gamma\Rightarrow\Delta,\neg\psi} \\ [\neg-\Rightarrow] & \frac{\Gamma\Rightarrow\Delta,\psi}{\Gamma,\neg-\psi\Rightarrow\Delta} & [\Rightarrow\neg-] & \frac{\Gamma,\psi\Rightarrow\Delta}{\Gamma\Rightarrow\Delta,\neg\psi} \\ [\otimes\Rightarrow] & \frac{\Gamma,\psi,\varphi\Rightarrow\Delta}{\Gamma,\psi\otimes\varphi\Rightarrow\Delta} & [\Rightarrow\neg-] & \frac{\Gamma,\psi\Rightarrow\Delta}{\Gamma\Rightarrow\Delta,\psi} \\ [\otimes\Rightarrow] & \frac{\Gamma,\psi,\varphi\Rightarrow\Delta}{\Gamma,\psi\otimes\varphi\Rightarrow\Delta} & [\Rightarrow\otimes] & \frac{\Gamma\Rightarrow\Delta,\psi\quad\Gamma\Rightarrow\Delta,\varphi}{\Gamma\Rightarrow\Delta,\psi\otimes\varphi} \\ [\neg\otimes\Rightarrow] & \frac{\Gamma,\neg\psi,\neg\varphi\Rightarrow\Delta}{\Gamma,\neg(\psi\otimes\varphi)\Rightarrow\Delta} & [\Rightarrow\neg\otimes] & \frac{\Gamma\Rightarrow\Delta,\psi\quad\Gamma\Rightarrow\Delta,\neg\varphi}{\Gamma\Rightarrow\Delta,\psi\otimes\varphi} \\ [\oplus\Rightarrow] & \frac{\Gamma,\psi\Rightarrow\Delta\quad\Gamma,\varphi\Rightarrow\Delta}{\Gamma,\psi\oplus\varphi\Rightarrow\Delta} & [\Rightarrow\oplus] & \frac{\Gamma\Rightarrow\Delta,\psi,\varphi}{\Gamma\Rightarrow\Delta,\psi\oplus\varphi} \\ [\neg\oplus\Rightarrow] & \frac{\Gamma,\neg\psi\Rightarrow\Delta\quad\Gamma,\neg\varphi\Rightarrow\Delta}{\Gamma,\neg(\psi\oplus\varphi)\Rightarrow\Delta} & [\Rightarrow\neg\oplus] & \frac{\Gamma\Rightarrow\Delta,\psi,\varphi}{\Gamma\Rightarrow\Delta,\neg(\psi\oplus\varphi)} \\ [N\Rightarrow] & \Gamma,N\Rightarrow\Delta \\ [\negN\Rightarrow] & \Gamma,\negN\Rightarrow\Delta \end{array}$$

Plan of Module 4

- General Introduction
 - Proof systems
 - Sequent calculi

Proof Systems for Logic-Based Argumentation

Dynamic proof systems

- Annotation-based systems
- Other approaches

Dynamic Proof Systems

• Dynamic sequent calculus: sequent calculus + attack rules.

Dynamic Proof Systems

- Dynamic sequent calculus: sequent calculus + attack rules.
- The set of derived formulas *does not* monotonically grow in the size of the assumptions;

Derived formulas may be 'discharged' when the derivation progresses.

- Dynamic sequent calculus: sequent calculus + attack rules.
- The set of derived formulas *does not* monotonically grow in the size of the assumptions;

Derived formulas may be 'discharged' when the derivation progresses.

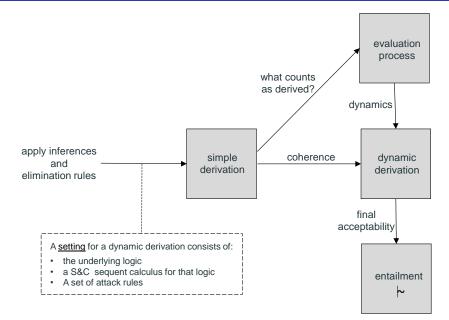
- At any stage of the derivation a derived sequent may be:
 - accepted (i.e., it is derived from the premises and there is no known reason to discharge it),
 - eliminated (i.e., it is attacked by an accepted sequent), or
 - finally accepted (i.e., it is accepted and cannot be eliminated in any extension of the derivation).

- Dynamic sequent calculus: sequent calculus + attack rules.
- The set of derived formulas *does not* monotonically grow in the size of the assumptions;

Derived formulas may be 'discharged' when the derivation progresses.

- At any stage of the derivation a derived sequent may be:
 - accepted (i.e., it is derived from the premises and there is no known reason to discharge it),
 - eliminated (i.e., it is attacked by an accepted sequent), or
 - finally accepted (i.e., it is accepted and cannot be eliminated in any extension of the derivation).
- S ⊢_P ψ [S ⊢_P ψ] if there is a [dynamic] derivation in the [dynamic] proof system P, in which Γ ⇒ ψ is finally derived for some Γ ⊆ S.

Dynamic Derivations



Example: A dynamic sequent calculus based on:

• CL and its sequent calculus LK,

•
$$\frac{\Gamma_1 \Rightarrow \psi_1 \quad \psi_1 \Rightarrow \neg \bigwedge \Gamma'_2 \quad \neg \bigwedge \Gamma'_2 \Rightarrow \psi_1 \quad \Gamma_2, \Gamma'_2 \Rightarrow \psi_2}{\Gamma_2, \Gamma'_2 \neq \psi_2} \quad \text{Ucut}$$

• The assumptions $S = \{p, \neg p, q\}$

٥

Example: A dynamic sequent calculus based on:

• CL and its sequent calculus LK,

$$\frac{\Gamma_1 \Rightarrow \psi_1 \quad \psi_1 \Rightarrow \neg \bigwedge \Gamma'_2 \quad \neg \bigwedge \Gamma'_2 \Rightarrow \psi_1 \quad \Gamma_2, \Gamma'_2 \Rightarrow \psi_2}{\Gamma_2, \Gamma'_2 \neq \psi_2} \quad \text{Ucut}$$

• The assumptions $S = \{p, \neg p, q\}$

A [simple] derivation: (Sequence of tuples of the form (i, s, J))

1	$q \Rightarrow q$	Axiom
2	$oldsymbol{ ho} \Rightarrow oldsymbol{ ho}$	Axiom
3	$\Rightarrow p, \neg p$	[⇒¬],2
4	$\Rightarrow p \lor \neg p$	[⇒∨],3

٥

Example: A dynamic sequent calculus based on:

• CL and its sequent calculus LK,

$$\frac{\Gamma_1 \Rightarrow \psi_1 \quad \psi_1 \Rightarrow \neg \bigwedge \Gamma'_2 \quad \neg \bigwedge \Gamma'_2 \Rightarrow \psi_1 \quad \Gamma_2, \Gamma'_2 \Rightarrow \psi_2}{\Gamma_2, \Gamma'_2 \neq \psi_2} \quad \text{Ucut}$$

• The assumptions $S = \{p, \neg p, q\}$

A [simple] derivation: (Sequence of tuples of the form (i, s, J))

1	$m{q} \Rightarrow m{q}$	Axiom
2	$oldsymbol{ ho} \Rightarrow oldsymbol{ ho}$	Axiom
3	\Rightarrow p , $\neg p$	[⇒¬],2
4	$\Rightarrow p \lor \neg p$	[⇒∨],3
5	$ eg p \Rightarrow eg p$	Axiom

٥

Example: A dynamic sequent calculus based on:

• CL and its sequent calculus LK,

$$\frac{\Gamma_1 \Rightarrow \psi_1 \quad \psi_1 \Rightarrow \neg \Lambda \Gamma'_2 \quad \neg \Lambda \Gamma'_2 \Rightarrow \psi_1 \quad \Gamma_2, \Gamma'_2 \Rightarrow \psi_2}{\Gamma_2, \Gamma'_2 \neq \psi_2} \quad \text{Ucut}$$

• The assumptions $S = \{p, \neg p, q\}$

A [simple] derivation: (Sequence of tuples of the form (i, s, J))

1	$m{q} \Rightarrow m{q}$	Axiom
2	$oldsymbol{ ho} \Rightarrow oldsymbol{ ho}$	Axiom
3	$\Rightarrow p, \neg p$	[⇒¬],2
4	$\Rightarrow p \lor \neg p$	[⇒∨],3
5	$\neg p \Rightarrow \neg p$	Axiom
1		The deriv

The derived sequents in Tuples 2 and 5 are conflicting.

٥

Example: A dynamic sequent calculus based on:

• CL and its sequent calculus LK,

$$\frac{\Gamma_1 \Rightarrow \psi_1 \quad \psi_1 \Rightarrow \neg \bigwedge \Gamma'_2 \quad \neg \bigwedge \Gamma'_2 \Rightarrow \psi_1 \quad \Gamma_2, \Gamma'_2 \Rightarrow \psi_2}{\Gamma_2, \Gamma'_2 \neq \psi_2} \quad \text{Ucut}$$

• The assumptions $S = \{p, \neg p, q\}$

A [simple] derivation: (Sequence of tuples of the form (i, s, J))

1	$q \Rightarrow q$	Axiom
2	$ ho \Rightarrow ho$	Axiom
3	\Rightarrow p , $\neg p$	[⇒¬],2
4	$\Rightarrow p \lor \neg p$	[⇒∨],3
5	$ eg p \Rightarrow eg p$	Axiom
6	p eq p	Ucut 5, 5, 5, <mark>2</mark>

٥

Example: A dynamic sequent calculus based on:

• CL and its sequent calculus LK,

$$\frac{\Gamma_1 \Rightarrow \psi_1 \quad \psi_1 \Rightarrow \neg \bigwedge \Gamma'_2 \quad \neg \bigwedge \Gamma'_2 \Rightarrow \psi_1 \quad \Gamma_2, \Gamma'_2 \Rightarrow \psi_2}{\Gamma_2, \Gamma'_2 \neq \psi_2} \quad \text{Ucut}$$

• The assumptions $S = \{p, \neg p, q\}$

A [simple] derivation: (Sequence of tuples of the form (i, s, J))

1	$q \Rightarrow q$	Axiom
2	$oldsymbol{ ho} \Rightarrow oldsymbol{ ho}$	Axiom
3	\Rightarrow p , $\neg p$	[⇒¬],2
4	$\Rightarrow p \lor \neg p$	$[\Rightarrow \lor], 3$
5	$ eg p \Rightarrow eg p$	Axiom
6	$oldsymbol{ ho} eq oldsymbol{ ho}$	Ucut 5, 5, 5, <mark>2</mark>
1		At this point, the derived $p \Rightarrow p$ should be discharged.

1	$q \Rightarrow q$	Axiom
2	$oldsymbol{ ho} \Rightarrow oldsymbol{ ho}$	Axiom
3	\Rightarrow p , $\neg p$	[⇒¬],2
4	$\Rightarrow p \lor \neg p$	$[\Rightarrow \lor], 3$
5	$ eg p \Rightarrow eg p$	Axiom
6	$oldsymbol{ ho} eq oldsymbol{ ho}$	Ucut 5, 5, 5, 2
!		At this point, the derived $p \Rightarrow p$ should be discharged.

1	$q \Rightarrow q$	Axiom
2	$p \Rightarrow p$	Axiom
3	$\Rightarrow p, \neg p$	[⇒¬],2
4	$\Rightarrow p \lor \neg p$	[⇒∨],3
5	$\neg p \Rightarrow \neg p$	Axiom
6	p eq p	Ucut 5, 5, 5,
1		but the rev

... but the reverse attack may also be produced:

2

1	$q \Rightarrow q$	Axiom
2	$oldsymbol{ ho} \Rightarrow oldsymbol{ ho}$	Axiom
3	\Rightarrow p , $\neg p$	[⇒¬],2
4	$\Rightarrow p \lor \neg p$	[⇒∨],3
5	$\neg p \Rightarrow \neg p$	Axiom
6	$oldsymbol{ ho} eq oldsymbol{ ho}$	Ucut 5, 5, 5, 2
7	$oldsymbol{ ho} \Rightarrow \neg \neg oldsymbol{ ho}$	[]
8	$ eg \neg ightarrow ho \Rightarrow ho$	[]
9	$\neg p ightarrow \neg p$	Ucut 2, 7, 8, <mark>5</mark>

1	$q \Rightarrow q$	Axiom
2	$oldsymbol{ ho} \Rightarrow oldsymbol{ ho}$	Axiom
3	$\Rightarrow p, \neg p$	$[\Rightarrow \neg], 2$
4	$\Rightarrow p \lor \neg p$	$[\Rightarrow \lor], 3$
5	$\neg p \Rightarrow \neg p$	Axiom
6	$oldsymbol{ ho} eq oldsymbol{ ho}$	Ucut 5, 5, 5, 2
7	$p \Rightarrow \neg \neg p$	[]
8	$ eg \neg \neg p \Rightarrow p$	[]
9	$\neg p eq \neg p$	Ucut 2, 7, 8, 5
?		What is the status of the sequents at this point?

1	$m{q} \Rightarrow m{q}$	Axiom
2	$oldsymbol{ ho} \Rightarrow oldsymbol{ ho}$	Axiom
3	\Rightarrow p , $\neg p$	[⇒¬],2
4	$\Rightarrow p \lor \neg p$	[⇒∨],3
5	$ eg p \Rightarrow eg p$	Axiom
6	$oldsymbol{ ho} eq oldsymbol{ ho}$	Ucut 5, 5, 5, 2
7	$p \Rightarrow \neg \neg p$	[]
8	$ eg \neg \neg p \Rightarrow p$	[]
9	$\neg p i \neg p$	$Ucut\ 2,7,8,5$

Intuition:

- $p \Rightarrow p$ and $\neg p \Rightarrow \neg p$ attack each other; they should not be finally derived.
- The sequent $\Rightarrow p \lor \neg p$ is not attacked, thus it should be finally derived.
- $q \Rightarrow q$ is defended by $\Rightarrow p \lor \neg p$, thus it should be finally derived as well.

1	$m{q} \Rightarrow m{q}$	Axiom
2	$oldsymbol{ ho} \Rightarrow oldsymbol{ ho}$	Axiom
3	$\Rightarrow p, \neg p$	[⇒¬],2
4	$\Rightarrow p \lor \neg p$	[⇒∨],3
5	$ eg p \Rightarrow eg p$	Axiom
6	$oldsymbol{ ho} eq oldsymbol{ ho}$	Ucut 5, 5, 5, 2
7	$p \Rightarrow \neg \neg p$	[]
8	$ eg \neg ightarrow ho \Rightarrow ho$	[]
9	$\neg p i \neg p$	Ucut 2, 7, 8, 5

Intuition:

- $p \Rightarrow p$ and $\neg p \Rightarrow \neg p$ attack each other; they should not be finally derived.
- The sequent $\Rightarrow p \lor \neg p$ is not attacked, thus it should be finally derived.
- $q \Rightarrow q$ is defended by $\Rightarrow p \lor \neg p$, thus it should be finally derived as well.
- We need an evaluation process for determining the sequents' statuses.
- Dynamic derivation = simple derivation + evaluation process for controlling the derivation flow.

What Counts as Derived and When? Top-Down Evaluation Algorithm

```
function Evaluate(\mathcal{D})
Elim := Attack := Derived := \emptyset;
while (\mathcal{D} is not empty) do {
     if (\text{Top}(\mathcal{D}) = \langle i, A, J \rangle)
          Derived := Derived \cup {A};
     if (\text{Top}(\mathcal{D}) = \langle i, \overline{A}, J \rangle)
          if (B attacks A and B \notin Elim)
               Elim := Elim \cup {A};
               Attack := Attack \cup {B};
     \mathcal{D} := \mathsf{Tail}(\mathcal{D}); \}
Accept := Derived – Elim;
return (Elim, Attack, Accept)
```

/* \mathcal{D} – a simple derivation */

/* top-down iteration */

/* sequent introduction tuple */

```
/* sequent elimination tuple */
```

Evaluation procedure for a simple derivation $\ensuremath{\mathcal{D}}$

1	$q \Rightarrow q$	Axiom
2	$oldsymbol{ ho} \Rightarrow oldsymbol{ ho}$	Axiom
3	$\Rightarrow p, \neg p$	[⇒¬],2
4	$\Rightarrow p \lor \neg p$	[⇒∨],3
5	$\neg p \Rightarrow \neg p$	Axiom
6	$oldsymbol{ ho} eq oldsymbol{ ho}$	Ucut 5, 5, 5, 2
7	$p \Rightarrow \neg \neg p$	[]
8	$ eg \neg ho \Rightarrow ho$	[]
9	$\neg p ightarrow \neg p$	Ucut 2, 7, 8, 5

Evaluation:

Derived

 \implies

Elim $\neg p \Rightarrow \neg p$

Attack $p \Rightarrow p$

Accept

	1	$m{q} \Rightarrow m{q}$	Axiom
	2	$oldsymbol{ ho} \Rightarrow oldsymbol{ ho}$	Axiom
	3	$\Rightarrow p, \neg p$	[⇒¬],2
	4	$\Rightarrow p \lor \neg p$	[⇒∨],3
	5	$\neg p \Rightarrow \neg p$	Axiom
	6	$oldsymbol{ ho} eq oldsymbol{ ho}$	Ucut 5, 5, 5, 2
\implies	7	$ ho \Rightarrow \neg \neg ho$	[]
\implies	8	$ eg \neg p \Rightarrow p$	[]
	9	eg p eq eg eg eg eg eg eg eg eg eg eg	Ucut 2, 7, 8, 5

Evaluation:

 $\begin{array}{lll} \mbox{Derived} & \neg\neg p \Rightarrow p, \ p \Rightarrow \neg\neg p, \\ \mbox{Elim} & \neg p \Rightarrow \neg p \\ \mbox{Attack} & p \Rightarrow p \\ \mbox{Accept} \end{array}$

	1	$q \Rightarrow q$	Axiom
	2	$ ho \Rightarrow ho$	Axiom
	3	\Rightarrow p , $\neg p$	[⇒¬],2
	4	$\Rightarrow p \lor \neg p$	$[\Rightarrow \lor], 3$
	5	$ eg p \Rightarrow eg p$	Axiom
\implies	6	p eq p	$Ucut \ 5, 5, 5, 2 \rho \Rightarrow \rho \text{ is not eliminated since } \neg \rho \Rightarrow \neg \rho \text{ was eliminated}$
	7	$p \Rightarrow \neg \neg p$	[]
	8	$ eg \neg ho \Rightarrow ho$	[]
	9	$\neg p i \neg p$	Ucut 2, 7, 8, 5

Evaluation:

Derived $\neg \neg p \Rightarrow p, \ p \Rightarrow \neg \neg p,$ Elim $\neg p \Rightarrow \neg p$ Attack $p \Rightarrow p$ Accept

\implies	1	$m{q} \Rightarrow m{q}$	Axiom
\implies	2	$oldsymbol{ ho} \Rightarrow oldsymbol{ ho}$	Axiom
\implies	3	$\Rightarrow p, \neg p$	[⇒¬],2
\implies	4	$\Rightarrow p \lor \neg p$	[⇒∨],3
\implies	5	$\neg p \Rightarrow \neg p$	Axiom
	6	$oldsymbol{ ho} eq oldsymbol{ ho}$	Ucut 5, 5, 5, 2
	7	$oldsymbol{ ho} \Rightarrow \neg \neg oldsymbol{ ho}$	[]
	8	$\neg \neg p \Rightarrow p$	[]
	9	eg p eq eg	Ucut 2, 7, 8, 5

Evaluation:

 $\begin{array}{lll} \mbox{Derived} & \neg\neg p \Rightarrow p, \ p \Rightarrow \neg\neg p, \ \neg p \Rightarrow \neg p, \ \Rightarrow p \lor \neg p, \ \dots \end{array}$ $\begin{array}{lll} \mbox{Elim} & \neg p \Rightarrow \neg p \\ \mbox{Attack} & p \Rightarrow p \\ \mbox{Accept} \end{array}$

1	$m{q} \Rightarrow m{q}$	Axiom
2	$oldsymbol{ ho} \Rightarrow oldsymbol{ ho}$	Axiom
3	$\Rightarrow p, \neg p$	[⇒¬],2
4	$\Rightarrow p \lor \neg p$	[⇒∨],3
5	$\neg p \Rightarrow \neg p$	Axiom
6	p eq p	Ucut 5, 5, 5, 2
7	$p \Rightarrow \neg \neg p$	[]
8	$ eg \neg ho \Rightarrow ho$	[]
9	$\neg p i \neg p$	Ucut 2, 7, 8, 5

Evaluation:

 $\begin{array}{lll} \text{Derived} & \neg \neg p \Rightarrow p, \ p \Rightarrow \neg \neg p, \ \neg p \Rightarrow \neg p, \ \Rightarrow p \lor \neg p, \ \ldots \\ \text{Elim} & \neg p \Rightarrow \neg p \\ \text{Attack} & p \Rightarrow p \\ \text{Accept} & \text{Derived} \setminus \{\neg p \Rightarrow \neg p\} \end{array}$

A $\langle \mathfrak{L}, \mathcal{C}, \mathcal{A} \rangle$ -based *dynamic derivation* for S is a simple derivation \mathcal{D} of one of the following forms:

- $\mathcal{D} = \langle T \rangle$, where $T = \langle 1, s, J \rangle$ is a proof tuple.
- D extends a dynamic derivation by introducing tuples whose sequents are not in Elim(D).
- D extends a dynamic derivation by eliminating tuples, such that:
 1. D is coherent [Attack(D) ∩ Elim(D) = Ø],
 - 2. (\mathcal{S} -based) attackers are not attacked by accepted sequents.

O.Arieli, C.Straßer: Logical argumentation by dynamic proof systems. Theoretical Computer Science 781: 63-91, 2019.

A $\langle \mathfrak{L}, \mathcal{C}, \mathcal{A} \rangle$ -based *dynamic derivation* for S is a simple derivation \mathcal{D} of one of the following forms:

- $\mathcal{D} = \langle T \rangle$, where $T = \langle 1, s, J \rangle$ is a proof tuple.
- D extends a dynamic derivation by introducing tuples whose sequents are not in Elim(D).
- D extends a dynamic derivation by eliminating tuples, such that:
 1. D is coherent [Attack(D) ∩ Elim(D) = Ø],
 - 2. (S-based) attackers are not attacked by accepted sequents.

A sequent (argument) *A* is *finally derived* in a dynamic derivation \mathcal{D} , if $T(s) = \langle i, s, J \rangle$ is accepted in \mathcal{D} , and \mathcal{D} cannot be extended to any derivation for S, in which T(s) is eliminated.

O.Arieli, C.Straßer: Logical argumentation by dynamic proof systems. Theoretical Computer Science 781: 63-91, 2019.

A $\langle \mathfrak{L}, \mathcal{C}, \mathcal{A} \rangle$ -based *dynamic derivation* for S is a simple derivation \mathcal{D} of one of the following forms:

- $\mathcal{D} = \langle T \rangle$, where $T = \langle 1, s, J \rangle$ is a proof tuple.
- D extends a dynamic derivation by introducing tuples whose sequents are not in Elim(D).
- D extends a dynamic derivation by eliminating tuples, such that:
 1. D is coherent [Attack(D) ∩ Elim(D) = Ø],
 - 2. (S-based) attackers are not attacked by accepted sequents.

A sequent (argument) *A* is *finally derived* in a dynamic derivation \mathcal{D} , if $T(s) = \langle i, s, J \rangle$ is accepted in \mathcal{D} , and \mathcal{D} cannot be extended to any derivation for S, in which T(s) is eliminated.

 $\mathcal{S} \sim_{\mathsf{P}} \psi$ if there is a dynamic derivation for \mathcal{S} , based on $\mathsf{P} = \langle \mathfrak{L}, \mathcal{C}, \mathcal{A} \rangle$, in which $\Gamma \Rightarrow \psi$ is finally derived for some $\Gamma \subseteq \mathcal{S}$.

O.Arieli, C.Straßer: Logical argumentation by dynamic proof systems. Theoretical Computer Science 781: 63-91, 2019.

1. $\mathcal{S} \not\sim p$ and $\mathcal{S} \not\sim \neg p$

 $p \Rightarrow p$ and $\neg p \Rightarrow \neg p$ attack each other so they cannot be finally accepted:

1. $\mathcal{S} \not\sim p$ and $\mathcal{S} \not\sim \neg p$

 $p \Rightarrow p$ and $\neg p \Rightarrow \neg p$ attack each other so they cannot be finally accepted:

1	$q \Rightarrow q$	Axiom
2	$oldsymbol{ ho} \Rightarrow oldsymbol{ ho}$	Axiom
3	$\Rightarrow p, \neg p$	[⇒¬],2
4	$\Rightarrow p \lor \neg p$	[⇒∨],3
5	$ eg p \Rightarrow eg p$	Axiom
6	p eq p	Ucut 5, 5, 5, 2

Attack :
$$\neg p \Rightarrow \neg p$$

Elim : $p \Rightarrow p$
Accept : Derived \ { $p \Rightarrow p$ }

1. $\mathcal{S} \not\sim p$ and $\mathcal{S} \not\sim \neg p$

 $p \Rightarrow p$ and $\neg p \Rightarrow \neg p$ attack each other so they cannot be finally accepted:

1	$q \Rightarrow q$	Axiom
2	$ ho \Rightarrow ho$	Axiom
3	$\Rightarrow p, \neg p$	[⇒¬],2
4	$\Rightarrow p \lor \neg p$	[⇒∨],3
5	$\neg p \Rightarrow \neg p$	Axiom
6	$oldsymbol{ ho} eq oldsymbol{ ho}$	Ucut 5, 5, 5, 2

1
$$q \Rightarrow q$$
Axiom2 $p \Rightarrow p$ Axiom3 $\Rightarrow p, \neg p$ $[\Rightarrow \neg], 2$ 4 $\Rightarrow p \lor \neg p$ $[\Rightarrow \lor], 3$ 5 $\neg p \Rightarrow \neg p$ Axiom6 $p \Rightarrow p$ Ucut 5, 5, 5, 27 $p \Rightarrow \neg \neg p$ $[...]$ 8 $\neg \neg p \Rightarrow p$ $[...]$ 9 $\neg p \Rightarrow \neg p$ Ucut 2, 7, 8, 5

Attack : $\neg p \Rightarrow \neg p$ Elim : $p \Rightarrow p$ Accept : Derived \ { $p \Rightarrow p$ } Attack : $p \Rightarrow p$ Elim : $\neg p \Rightarrow \neg p$ Accept : Derived \ { $\neg p \Rightarrow \neg p$ }

2. $\mathcal{S} \models p \lor \neg p$

 $\Rightarrow p \lor \neg p$ is derived and cannot be attacked (its support is empty), therefore it is finally accepted.

2. $S \vdash p \lor \neg p$

 $\Rightarrow p \lor \neg p$ is derived and cannot be attacked (its support is empty), therefore it is finally accepted.

3. *S* |∼ *q*

2. $S \sim p \lor \neg p$

 $\Rightarrow p \lor \neg p$ is derived and cannot be attacked (its support is empty), therefore it is finally accepted.

3. *S* |∼ *q*

- 1 $q \Rightarrow q$ Axiom
- 2 $p \Rightarrow p$ Axiom
- $3 \Rightarrow \rho, \neg \rho \quad [\Rightarrow \neg], 2$
- $4 \Rightarrow p \lor \neg p \quad [\Rightarrow \lor], 3$

2. $S \sim p \lor \neg p$

 $\Rightarrow p \lor \neg p$ is derived and cannot be attacked (its support is empty), therefore it is finally accepted.

3. *S* |∼ *q*

1	$q \Rightarrow q$	Axiom
2	$ ho \Rightarrow ho$	Axiom
3	$\Rightarrow p, \neg p$	[⇒¬],2
4	$\Rightarrow p \lor \neg p$	[⇒∨],3
5	$p, \neg p \Rightarrow \neg q$	[]
6	$ eg q \Rightarrow eg q$	Axiom
7	q eq q	Ucut 5, 6, 6, 1

6,1

2. $\mathcal{S} \sim p \vee \neg p$

 $\Rightarrow p \lor \neg p$ is derived and cannot be attacked (its support is empty), therefore it is finally accepted.

3. $S \sim q$

1	$q \Rightarrow q$	Axiom
2	$ ho \Rightarrow ho$	Axiom
3	$\Rightarrow p, \neg p$	[⇒¬],2
4	$\Rightarrow p \lor \neg p$	[⇒∨],3
5	$p, \neg p \Rightarrow \neg q$	[]
6	$ eg q \Rightarrow eg q$	Axiom
7	q eq q	Ucut 5, 6, 6, 7
8	$p, \neg p ightarrow \neg q$	Ucut $4, \cdot, \cdot, 5$

2. $\mathcal{S} \models p \lor \neg p$

 $\Rightarrow p \lor \neg p$ is derived and cannot be attacked (its support is empty), therefore it is finally accepted.

3. *S* |∼ *q*

 $q \Rightarrow \neg q$ is defended against all its *S*-based attackers by a finally accepted argument, therefore it is also finally accepted.

 $q \Rightarrow q$ Axiom 9 $p, \neg p, q \Rightarrow \neg q$ [...] $p \Rightarrow p$ Axiom 10 $q \Rightarrow q$ Ucut 9, 6, 6, 1 $\Rightarrow p, \neg p$ [$\Rightarrow \neg$], 2 $\Rightarrow p \lor \neg p$ [$\Rightarrow \lor$], 3 $p, \neg p \Rightarrow \neg q$ [...] $\neg q \Rightarrow \neg q$ Axiom $q \Rightarrow q$ Ucut 5, 6, 6, 1 $p, \neg p \Rightarrow \neg q$ Ucut 4, $\because, 5$

2. $\mathcal{S} \models p \lor \neg p$

 $\Rightarrow p \lor \neg p$ is derived and cannot be attacked (its support is empty), therefore it is finally accepted.

3. *S* |∼ *q*

 $q \Rightarrow \neg q$ is defended against all its *S*-based attackers by a finally accepted argument, therefore it is also finally accepted.

1 $q \Rightarrow q$ Axiom9 $p, \neg p, q \Rightarrow \neg q$ [...]2 $p \Rightarrow p$ Axiom10 $q \Rightarrow q$ Ucut 9, 6, 6, 13 $\Rightarrow p, \neg p$ $[\Rightarrow \neg], 2$ 11 $p, \neg p, q \Rightarrow \neg q$ Ucut 4, $\cdot, \cdot, 9$ 4 $\Rightarrow p \lor \neg p$ $[\Rightarrow \lor], 3$ 5 $p, \neg p \Rightarrow \neg q$ [...]6 $\neg q \Rightarrow \neg q$ Axiom7 $q \Rightarrow q$ Ucut 5, 6, 6, 18 $p, \neg p \Rightarrow \neg q$ Ucut 4, $\cdot, \cdot, 5$

2. $\mathcal{S} \models p \lor \neg p$

 $\Rightarrow p \lor \neg p$ is derived and cannot be attacked (its support is empty), therefore it is finally accepted.

3. *S* |∼ *q*

1	$q \Rightarrow q$	Axiom	9	$p, \neg p, q \Rightarrow \neg q$	[]
2	$oldsymbol{ ho} \Rightarrow oldsymbol{ ho}$	Axiom	10	q eq q	Ucut 9, 6, 6, 1
3	\Rightarrow p , $\neg p$	[⇒¬],2	11	$p, \neg p, q ightarrow \neg q$	Ucut 4, \cdot , \cdot , 9
4	$\Rightarrow p \lor \neg p$	[⇒∨],3			attackers of $q \Rightarrow q$ are eliminated
5	$p, \neg p \Rightarrow \neg q$	[]			
6	$ eg q \Rightarrow eg q$	Axiom			
7	q eq q	Ucut 5, 6, 6, 1			
8	$p, \neg p ightarrow \neg q$	Ucut 4, $\cdot, \cdot, 5$			

Logic with weak negation $(p \not\vdash \neg p, \neg p \not\vdash p)$, where $p \not\vdash \neg \neg p$; Attack by Defeat. $S = \{p, \neg p, \neg \neg p, \neg \neg \neg p, \neg \neg \neg p\}, A_i = \neg^i p \Rightarrow \neg^i p$

Logic with weak negation ($p \not\vdash \neg p, \neg p \not\vdash p$), where $p \not\vdash \neg \neg p$; Attack by Defeat.

 $S = \{p, \neg p, \neg \neg p, \neg \neg \neg p, \neg \neg \neg p\}, A_i = \neg^i p \Rightarrow \neg^i p$

1	A 0	Axiom
2	<i>A</i> ₁	Axiom
3	A ₂	Axiom

Logic with weak negation ($p \not\vdash \neg p, \neg p \not\vdash p$), where $p \not\vdash \neg \neg p$; Attack by Defeat.

 $\mathcal{S} = \{ p, \neg p, \neg \neg p, \neg \neg \neg p, \neg \neg \neg p \}, \ A_i = \neg^i p \Rightarrow \neg^i p$

1	A_0	Axiom
2	<i>A</i> ₁	Axiom
3	A_2	Axiom
4	$\overline{A_1}$	Def, 3, 2

Logic with weak negation ($p \not\vdash \neg p, \neg p \not\vdash p$), where $p \not\vdash \neg \neg p$; Attack by Defeat.

 $S = \{p, \neg p, \neg \neg p, \neg \neg \neg p, \neg \neg \neg p\}, A_i = \neg^i p \Rightarrow \neg^i p$

1	A 0	Axiom
2	A_1	Axiom
3	A ₂	Axiom
4	$\overline{A_1}$	Def, 3, 2

Logic with weak negation ($p \not\vdash \neg p, \neg p \not\vdash p$), where $p \not\vdash \neg \neg p$; Attack by Defeat.

 $\mathcal{S} = \{ p, \neg p, \neg \neg p, \neg \neg \neg p, \neg \neg \neg p \}, \ A_i = \neg^i p \Rightarrow \neg^i p$

1	A 0	Axiom
2	A_1	Axiom
3	A ₂	Axiom
4	$\overline{A_1}$	Def, 3, 2
5	A 3	Axiom

Logic with weak negation ($p \not\vdash \neg p, \neg p \not\vdash p$), where $p \not\vdash \neg \neg p$; Attack by Defeat.

 $\mathcal{S} = \{ p, \neg p, \neg \neg p, \neg \neg \neg p, \neg \neg \neg p \}, \ A_i = \neg^i p \Rightarrow \neg^i p$

1	A_0	Axiom
2	A_1	Axiom
3	A_2	Axiom
4	$\overline{A_1}$	Def, 3, 2
5	A_3	Axiom
6	$\overline{A_0}$	Def, 2, 1
7	$\overline{A_2}$	Def, 5, 3

Logic with weak negation ($p \not\vdash \neg p, \neg p \not\vdash p$), where $p \not\vdash \neg \neg p$; Attack by Defeat.

 $\mathcal{S} = \{ p, \neg p, \neg \neg p, \neg \neg p, \neg \neg p \}, \ A_i = \neg^i p \Rightarrow \neg^i p$

1	A_0	Axiom	
2	A 1	Axiom	
3	A ₂	Axiom	
4	$\overline{A_1}$	Def, 3, 2	An Unsuccessful Attack by A2
5	A ₃	Axiom	
6	$\overline{A_0}$	Def, 2, 1	
7	$\overline{A_2}$	Def, 5, 3	

Logic with weak negation ($p \not\vdash \neg p, \neg p \not\vdash p$), where $p \not\vdash \neg \neg p$; Attack by Defeat.

1	A_0	Axiom	
2	A 1	Axiom	
3	A ₂	Axiom	
4	$\overline{A_1}$	Def, 3, 2	An Unsuccessful Attack by A2
5	A 3	Axiom	
6	$\overline{A_0}$	Def, 2, 1	
7	$\overline{A_2}$	Def, 5, 3	
8	A ₄	Axiom	

Logic with weak negation ($p \not\vdash \neg p, \neg p \not\vdash p$), where $p \not\vdash \neg \neg p$; Attack by Defeat.

		_
1 A ₀	Axiom	
2 A ₁	Axiom	
3 A ₂	Axiom	
4 \overline{A}_1	Def, 3, 2	
5 A ₃	Axiom	
6 \overline{A}_0	Def, 2, 1	
7 $\overline{A_2}$	Def, 5, 3	
8 A4	Axiom	
9 A 1	Def, 3, 2	
10 A	Def, 8, 5	
$4 \qquad \overline{A}_{1}$ $5 \qquad A_{2}$ $6 \qquad \overline{A}_{0}$ $7 \qquad \overline{A}_{2}$ $8 \qquad A_{4}$ $9 \qquad \overline{A}_{1}$	Def, 3, 2 Axiom Def, 2, 1 Def, 5, 3 Axiom Def, 3, 2	

Logic with weak negation ($p \not\vdash \neg p, \neg p \not\vdash p$), where $p \not\vdash \neg \neg p$; Attack by Defeat.

1	<i>A</i> ₀	Axiom	
2	A_1	Axiom	
3	A 2	Axiom	
4	$\overline{A_1}$	Def, 3, 2	
5	A_3	Axiom	
6	$\overline{A_0}$	Def, 2, 1	An Unsuccessful Attack by A1
7	$\overline{A_2}$	Def, 5, 3	An Unsuccessful Attack by A ₃
8	A 4	Axiom	
9	$\overline{A_1}$	Def, 3, 2	
10	$\overline{A_3}$	Def, 8, 5	

Logic with weak negation ($p \not\vdash \neg p, \neg p \not\vdash p$), where $p \not\vdash \neg \neg p$; Attack by Defeat.

1	A 0	Axiom	
2	A_1	Axiom	
3	A ₂	Axiom	
4	$\overline{A_1}$	Def, 3, 2	
5	A_3	Axiom	
6	$\overline{A_0}$	Def, 2, 1	An Unsuccessful Attack by A1
7	$\overline{A_2}$	Def, 5, 3	An Unsuccessful Attack by A ₃
8	A_4	Axiom	
9	$\overline{A_1}$	Def, 3, 2	
10	$\overline{A_3}$	Def, 8, 5	

Logic with weak negation ($p \not\vdash \neg p, \neg p \not\vdash p$), where $p \not\vdash \neg \neg p$; Attack by Defeat.

1	A 0	Axiom	
2	A_1	Axiom	
3	A_2	Axiom	
4	$\overline{A_1}$	Def, 3, 2	
5	A_3	Axiom	
6	$\overline{A_0}$	Def, 2, 1	An Unsuccessful Attack by A1
7	$\overline{A_2}$	Def, 5, 3	An Unsuccessful Attack by A ₃
8	A_4	Axiom	
9	$\overline{A_1}$	Def, 3, 2	
10	$\overline{A_3}$	Def, 8, 5	

Logic with weak negation ($p \not\vdash \neg p, \neg p \not\vdash p$), where $p \not\vdash \neg \neg p$; Attack by Defeat.

1	A ₀	Axiom	
2	A_1	Axiom	
3	A ₂	Axiom	
4	$\overline{A_1}$	Def, 3, 2	
5	A_3	Axiom	
6	$\overline{A_0}$	Def, 2, 1	An Unsuccessful Attack by A1
7	$\overline{A_2}$	Def, 5, 3	An Unsuccessful Attack by A ₃
8	A_4	Axiom	
9	$\overline{A_1}$	Def, 3, 2	
10	$\overline{A_3}$	Def, 8, 5	

Logic with weak negation ($p \not\vdash \neg p, \neg p \not\vdash p$), where $p \not\vdash \neg \neg p$; Attack by Defeat.

 $\mathcal{S} = \{ p, \neg p, \neg \neg p, \neg \neg p, \neg \neg p \}, \ A_i = \neg^i p \Rightarrow \neg^i p$

1	<i>A</i> ₀	Axiom	
2	A_1	Axiom	
3	A ₂	Axiom	
4	$\overline{A_1}$	Def, 3, 2	
5	A_3	Axiom	
6	$\overline{A_0}$	Def, 2, 1	An Unsuccessful Attack by A1
7	$\overline{A_2}$	Def, 5, 3	An Unsuccessful Attack by A ₃
8	A_4	Axiom	
9	$\overline{A_1}$	Def, 3, 2	
10	$\overline{A_3}$	Def, 8, 5	

 $\mathcal{S} \models \neg^{0} p, \ \mathcal{S} \models \neg^{2} p, \ \mathcal{S} \models \neg^{4} p \text{ while } \mathcal{S} \not\models \neg^{1} p \text{ and } \mathcal{S} \not\models \neg^{3} p.$

Derivation-Based Argumentation Frameworks

 $\mathcal{AF}(\mathcal{D}) = \langle \mathsf{Derived}(\mathcal{D}), \mathsf{Attack}(\mathcal{D}) \rangle : \mathsf{An AF} \text{ induced by a [simple] derivation } \mathcal{D}.$

- $A \in \text{Derived}(\mathcal{D})$ if $\langle i, A, \underline{J} \rangle$ in \mathcal{D} , and
- $(A, B) \in \text{Attack}(\mathcal{D})$ if $\langle i, \overline{B}, J \rangle$ in \mathcal{D} and the attacker in J is A.

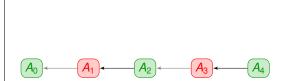
Derivation-Based Argumentation Frameworks

 $\mathcal{AF}(\mathcal{D}) = \langle \mathsf{Derived}(\mathcal{D}), \mathsf{Attack}(\mathcal{D}) \rangle : \mathsf{An AF} \text{ induced by a [simple] derivation } \mathcal{D}.$

- $A \in \text{Derived}(\mathcal{D})$ if $\langle i, A, \underline{J} \rangle$ in \mathcal{D} , and
- $(A, B) \in \text{Attack}(\mathcal{D})$ if $\langle i, \overline{B}, J \rangle$ in \mathcal{D} and the attacker in J is A.

Example (from the previous slide):

1	A_0	Axiom
2	A_1	Axiom
3	A ₂	Axiom
4	$\overline{A_1}$	Def, 3, 2
5	A ₃	Axiom
6	$\overline{A_0}$	Def, 2, 1
7	$\overline{A_2}$	Def, 5, 3
8	A_4	Axiom
9	$\overline{A_1}$	Def, 3, 2
10	$\overline{A_3}$	Def, 8, 5



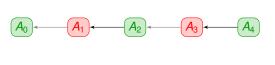
Derivation-Based Argumentation Frameworks

 $\mathcal{AF}(\mathcal{D}) = \langle \mathsf{Derived}(\mathcal{D}), \mathsf{Attack}(\mathcal{D}) \rangle : \mathsf{An AF} \text{ induced by a [simple] derivation } \mathcal{D}.$

- $A \in \text{Derived}(\mathcal{D})$ if $\langle i, A, \underline{J} \rangle$ in \mathcal{D} , and
- $(A, B) \in \text{Attack}(\mathcal{D})$ if $\langle i, \overline{B}, J \rangle$ in \mathcal{D} and the attacker in J is A.

Example (from the previous slide):

$\begin{array}{c} A_0\\ A_1\\ A_2 \end{array}$	Axiom Axiom Axiom
$\overline{A_1}$	Def, 3, 2
A_3	Axiom
$\overline{A_0}$	Def, 2, 1
$\overline{A_2}$	Def, 5, 3
A_4	Axiom
$\overline{A_1}$	Def, 3, 2
$\overline{A_3}$	Def, 8, 5
	$ \begin{array}{c} A_1\\ A_2\\ \overline{A_1}\\ \overline{A_1}\\ \overline{A_3}\\ \overline{A_0}\\ \overline{A_2}\\ \overline{A_4}\\ \end{array} $



Proposition

For every simple derivation \mathcal{D} the set Accept(\mathcal{D}) is conflict-free in $\mathcal{AF}(\mathcal{D})$. If \mathcal{D} is coherent, Accept(\mathcal{D}) is a stable extension of $\mathcal{AF}(\mathcal{D})$. $\mathsf{P} = \langle \mathfrak{L}, \mathcal{C}, \mathcal{A} \rangle - \text{a setting for a dynamic proof system.}$ (Recall: \mathcal{C} is sound and complete for $\mathfrak{L} = \langle \mathcal{L}, \vdash \rangle$: $\Gamma \vdash \psi$ iff $\vdash_{\mathcal{C}} \Gamma \Rightarrow \psi$)

Some properties of $\mid_{\sim_{\mathsf{P}}}$ will be shown for SAC (Support Attacking, and Contrapositive) settings:

A SAC setting $P = \langle \mathfrak{L}, \mathcal{C}, \mathcal{A} \rangle$ meats the following conditions:

1. C admits contraposition:

 $\begin{array}{l} \mathsf{lf} \vdash_{\mathcal{C}} \Delta \Rightarrow \neg \bigwedge \Theta, \text{ then for every } \Theta' \subseteq \Theta \text{ and } \Delta' \subseteq \Delta \text{ it holds that} \\ \vdash_{\mathcal{C}} (\Delta \setminus \Delta') \cup \Theta' \Rightarrow \neg \bigwedge ((\Theta \setminus \Theta') \cup \Delta'). \end{array}$

 A consists only of attack rules in the supports of the arguments (Ucut, Def, ConUcut, but not Reb or their direct versions).

(<u>Note</u>: any calculus with $[\neg \Rightarrow]$, $[\Rightarrow \neg]$, $[\land \Rightarrow]$ admits contraposition)

Some Comments and Properties of \sim_{P}

1. Notes on Final Acceptability

Proposition

• If A is finally accepted in D, then it is finally accepted in any extension of D.

Indeed, if *A* is not finally accepted in an extension \mathcal{D}' of \mathcal{D} , there is some extension \mathcal{D}'' of \mathcal{D}' in which *A* is eliminated. Since \mathcal{D}'' is also an extension of \mathcal{D} , *A* cannot be finally accepted in \mathcal{D} . \Box

Proposition

• Let P is a SAC. If A is finally accepted in a dynamic P-derivation \mathcal{D} , then every dynamic P-derivation \mathcal{D}' (for the same assumptions \mathcal{S}) can be extended to a derivation \mathcal{D}'' in which A is finally accepted.

Properties of \sim_{P}

2. $\vdash_{\mathsf{P}} \mathsf{and} \vdash$

Properties of \vdash_{P}

2. \vdash_{P} and \vdash

Proposition

If
$$\mathcal{A} = \emptyset$$
 then $\succ_{\mathsf{P}} = \vdash$.

Properties of \sim_{P}

2. \vdash_{P} and \vdash

Proposition

If $\mathcal{A} = \emptyset$ then $\succ_{\mathsf{P}} = \vdash$.

Proposition

If S is conflict-free (w.r.t. P), then $S \succ_{\mathsf{P}} \psi$ iff $S \vdash \psi$.

Properties of \sim_{P}

2. \vdash_{P} and \vdash

Proposition

If $\mathcal{A} = \emptyset$ then $\succ_{\mathsf{P}} = \vdash$.

Proposition

If S is conflict-free (w.r.t. P), then $S \sim_{\mathsf{P}} \psi$ iff $S \vdash \psi$.

Proposition

If A consists only of attacks in premises (as in SACs), then:

1. $\sim_{\mathsf{P}} \psi$ iff $\vdash \psi$, and

2. C is weakly complete for \succ_{P} : It holds that $\succ_{\mathsf{P}} \psi$ iff $\succ_{\mathcal{C}} \Rightarrow \psi$.

Properties of \sim_{P}

2. \vdash_{P} and \vdash

Proposition

If $\mathcal{A} = \emptyset$ then $\succ_{\mathsf{P}} = \vdash$.

Proposition

If S is conflict-free (w.r.t. P), then $S \sim_{\mathsf{P}} \psi$ iff $S \vdash \psi$.

Proposition

If A consists only of attacks in premises (as in SACs), then:

1. $\sim_{\mathsf{P}} \psi$ iff $\vdash \psi$, and

2. C is weakly complete for \succ_{P} : It holds that $\succ_{\mathsf{P}} \psi$ iff $\succ_{\mathcal{C}} \Rightarrow \psi$.

Proposition

If P is a SAC, then $S \sim_{\mathsf{P}} \psi$ iff $\{\phi \mid S \sim_{\mathsf{P}} \phi\} \vdash \psi$.

Properties of \sim_{P}

3. \vdash_{P} and Inconsistency Handling

- 1 2
- 3

Properties of \sim_{P}

3. ${\succ_{\mathsf{P}}}$ and Inconsistency Handling

Proposition (no conflicts are finally derivable)

It is not the case that $S \sim_{\mathsf{P}} \psi$ and $S \sim_{\mathsf{P}} \neg \psi$.

- 1 2
- 3

Properties of \sim_{P}

3. ${\succ_{\mathsf{P}}}$ and Inconsistency Handling

Proposition (no conflicts are finally derivable)

It is not the case that $S \models_{\mathsf{P}} \psi$ and $S \models_{\mathsf{P}} \neg \psi$.

Proposition (pre-paraconsistency)

If \vdash is pre-paraconsistent (p, $\neg p \not\vdash q$) then so is \vdash_{P} .

- 1 2
- 3

Properties of \sim_{P}

3. ${\succ_{\mathsf{P}}}$ and Inconsistency Handling

Proposition (no conflicts are finally derivable)

It is not the case that $S \succ_{\mathsf{P}} \psi$ and $S \succ_{\mathsf{P}} \neg \psi$.

Proposition (pre-paraconsistency)

If \vdash is pre-paraconsistent (p, $\neg p \not\vdash q$) then so is \vdash_{P} .

Proposition (non-interference)

If P is a SAC and \mathfrak{L} is uniform¹ then \succ_{P} satisfies non-interference² with respect to finite sets of assumptions.

¹ If
$$S_1 \cup \{\phi\} \parallel S_2$$
 and S_2 is \vdash -consistent, then $S_1 \vdash \phi$ iff $S_1, S_2 \vdash \phi$.
² If $S_1 \cup \{\phi\} \parallel S_2$, then $S_1 \mid_{\mathsf{P}P} \phi$ iff $S_1, S_2 \mid_{\mathsf{P}P} \phi$.

Properties of \sim_{P}

3. ${\succ_{\mathsf{P}}}$ and Inconsistency Handling

Proposition (no conflicts are finally derivable)

It is not the case that $S \models_{\mathsf{P}} \psi$ and $S \models_{\mathsf{P}} \neg \psi$.

Proposition (pre-paraconsistency)

If \vdash is pre-paraconsistent (p, $\neg p \not\vdash q$) then so is \vdash_{P} .

Proposition (non-interference)

If P is a SAC and \mathfrak{L} is uniform¹ then \succ_{P} satisfies non-interference² with respect to finite sets of assumptions.

Proposition (crash resistance)

If P is a SAC and \mathfrak{L} is uniform, there is no \sim_{P} -contaminating set.³

¹ If $S_1 \cup \{\phi\} \parallel S_2$ and S_2 is \vdash -consistent, then $S_1 \vdash \phi$ iff $S_1, S_2 \vdash \phi$. ² If $S_1 \cup \{\phi\} \parallel S_2$, then $S_1 \vdash_{P} \phi$ iff $S_1, S_2 \vdash_{P} \phi$. ³ That is: there is no *S* s.t. for every *S'* where *S* \parallel *S'* it holds that *S* $\vdash_{V} \psi$ iff *S*, *S'* $\vdash_{V} \psi$.

4. NMR-Related Properties of \sim_{P}

Proposition (Cumulativity [Kraus, Lehmann, Magidor, AlJ 44(1-2), 1990])

 \sim_{P} is cumulative, i.e., it satisfies the following postulates:

Cautious Reflexivity: If $\psi \not\vdash \neg \psi$ then $\psi \not\succ \psi$. Cautious Monotonicity: If $S \not\vdash \phi$ and $S \not\vdash \psi$, then $S, \phi \not\vdash \psi$. Cautious Cut: If $S \not\vdash \phi$ and $S, \phi \not\vdash \psi$, then $S \not\vdash \psi$. Left Logical Equivalence: If $\phi \vdash \psi$ and $\psi \vdash \phi$, then $S, \phi \not\vdash \rho$ iff $S, \psi \not\vdash \rho$. Right Weakening: If $\phi \vdash \psi$ and $S \not\vdash \phi$, then $S \not\vdash \psi$.

4. NMR-Related Properties of \sim_{P}

Proposition (Cumulativity [Kraus, Lehmann, Magidor, AlJ 44(1-2), 1990])

 \sim_{P} is cumulative, i.e., it satisfies the following postulates:

Cautious Reflexivity: If $\psi \not\vdash \neg \psi$ then $\psi \not\succ \psi$. Cautious Monotonicity: If $S \not\vdash \phi$ and $S \not\vdash \psi$, then $S, \phi \not\vdash \psi$. Cautious Cut: If $S \not\vdash \phi$ and $S, \phi \not\vdash \psi$, then $S \not\vdash \psi$. Left Logical Equivalence: If $\phi \vdash \psi$ and $\psi \vdash \phi$, then $S, \phi \not\vdash \rho$ iff $S, \psi \not\vdash \rho$. Right Weakening: If $\phi \vdash \psi$ and $S \not\vdash \phi$, then $S \not\vdash \psi$.

No preferentiality. Or is violated: $S, \phi \triangleright \rho$ and $S, \psi \triangleright \rho \neq S, \phi \lor \psi \triangleright \rho$. Counter-example (even for SAC): Consider $P = \langle CL, LK, Ucut \rangle$ and $S = \{p \land \neg q, p \land \neg r\}$. Then $S, q \models_P p$ and $S, r \models_P p$, but $S, q \lor r \not\models_P p$. (See explanations in: Arieli & Straßer: Logical argumentation by dynamic proof systems, TCS 781 (2019)]

Soundness and Completeness

Theorem

Let $P = \langle CL, LK, Ucut \rangle$. For a finite set S of formulas, the following are equivalent:

- $\mathcal{S} \sim_{\mathsf{P}} \psi$
- $\bullet \,\, \mathcal{S} \models^{\cap}_{\mathsf{CL},\mathsf{mcs}} \psi$
- $\bullet \,\, \mathcal{S} \mid \sim_{\mathsf{CL},\{\mathsf{Ucut}\},\mathsf{grd}}^{\cap} \psi$
- $\bullet \ \mathcal{S} \hspace{0.2em}\sim^{\cap}_{\mathsf{CL},\{\mathsf{Ucut}\},\mathsf{prf}} \psi$
- $\bullet \hspace{0.1 in} \mathcal{S} \hspace{0.1 in}{\mid\hspace{0.1 in}}^{\cap}_{\mathsf{CL},\{\mathsf{Ucut}\},\mathsf{stb}} \hspace{0.1 in} \psi$

Recall:

- S |~_P ψ if ∃Γ ⊆ S s.t. Γ ⇒ ψ is finally accepted in a P-derivation.
 S |~^Ω_{p mcs} ψ if ∩ MCS₂(S) ⊢ ψ.
- $\mathcal{S} \mapsto_{\mathfrak{L},\mathcal{A},sem}^{\cap} \psi$ if $\exists A \in \bigcap Sem(\mathcal{AF}_{\mathfrak{L},\mathcal{A}}(\mathcal{S}))$ where $Conc(A) = \psi$.

What about weakly skeptical semantics?

•
$$\mathcal{S} \sim_{\mathfrak{L},\mathsf{mcs}}^{\mathbb{m}} \psi$$
 if $\forall \mathcal{T} \in \bigcap \mathsf{MCS}_{\mathfrak{L}}(\mathcal{S})$ it holds that $\mathcal{T} \vdash \psi$.

• $\mathcal{S} \sim^{\mathbb{Q}}_{\mathfrak{L},\mathcal{A},sem} \psi$ if $\forall \mathcal{E} \in \bigcap Sem(\mathcal{AF}_{\mathfrak{L},\mathcal{A}}(\mathcal{S})) \exists \mathcal{A} \in \mathcal{E} \text{ s.t. } Conc(\mathcal{A}) = \psi$.

What about weakly skeptical semantics?

•
$$\mathcal{S} \sim \mathbb{C}_{\mathfrak{L},\mathsf{mcs}}^{\mathbb{C}} \psi$$
 if $\forall \mathcal{T} \in \bigcap \mathsf{MCS}_{\mathfrak{L}}(\mathcal{S})$ it holds that $\mathcal{T} \vdash \psi$.

• $\mathcal{S} \mapsto_{\mathfrak{L},\mathcal{A},\mathsf{sem}}^{\mathbb{n}} \psi$ if $\forall \mathcal{E} \in \bigcap \mathsf{Sem}(\mathcal{AF}_{\mathfrak{L},\mathcal{A}}(\mathcal{S})) \exists \mathcal{A} \in \mathcal{E} \text{ s.t. } \mathsf{Conc}(\mathcal{A}) = \psi$.

Final acceptance need to be weakened as well:

 $\Gamma \Rightarrow \psi$ is *sparsely finally accepted* in a derivation \mathcal{D} , if is it accepted in \mathcal{D} and $\Gamma' \Rightarrow \psi$ (for some $\Gamma' \subseteq \mathcal{S}$) is accepted in any extension of \mathcal{D} .

What about weakly skeptical semantics?

•
$$\mathcal{S} \sim \mathbb{C}_{\mathfrak{L},\mathsf{mcs}}^{\mathbb{C}} \psi$$
 if $\forall \mathcal{T} \in \bigcap \mathsf{MCS}_{\mathfrak{L}}(\mathcal{S})$ it holds that $\mathcal{T} \vdash \psi$.

• $\mathcal{S} \mapsto_{\mathfrak{L},\mathcal{A},\mathsf{sem}}^{\mathbb{G}} \psi$ if $\forall \mathcal{E} \in \bigcap \mathsf{Sem}(\mathcal{AF}_{\mathfrak{L},\mathcal{A}}(\mathcal{S})) \exists \mathcal{A} \in \mathcal{E} \text{ s.t. } \mathsf{Conc}(\mathcal{A}) = \psi$.

Final acceptance need to be weakened as well:

 $\Gamma \Rightarrow \psi$ is *sparsely finally accepted* in a derivation \mathcal{D} , if is it accepted in \mathcal{D} and $\Gamma' \Rightarrow \psi$ (for some $\Gamma' \subseteq \mathcal{S}$) is accepted in any extension of \mathcal{D} .

 $\mathcal{S} \models_{\mathsf{P}} \psi$, if $\Gamma \Rightarrow \psi$ ($\Gamma \subseteq \mathcal{S}$) is *sparsely* finally accepted in a P-derivation.

$\mathbf{I} = \{\mathbf{OL}, \mathbf{LN}, \mathbf{OCUL}, \mathbf{V} = \{\mathbf{p} \land \mathbf{q}, \mathbf{p} \land \mathbf{q}\}$			
1	$p \land q \Rightarrow p \land q$	Axiom	
2	$oldsymbol{ ho}\wedgeoldsymbol{q}\Rightarrow eg(eg oldsymbol{ ho}\wedgeoldsymbol{q})$	LK	
3	$oldsymbol{ ho} \wedge oldsymbol{q} \Rightarrow oldsymbol{q}$	LK	
4	$ eg p \land q \Rightarrow eg p \land q$	Axiom	
5	$ eg p \land q \Rightarrow eg (p \land q)$	LK	
6	$ eg p \land q \Rightarrow q$	LK	
7	$\Rightarrow \neg(p \wedge q) \leftrightarrow \neg(p \wedge q)$	LK	
8	$oldsymbol{p} \wedge oldsymbol{q} eq oldsymbol{q}$	<i>Ucut</i> ; 5, 7, 3	
9	$\Rightarrow eg(eg ho ho \wedge q) \leftrightarrow eg(eg ho \wedge q)$	LK	
10	$ eg p \land q eq q$	<i>Ucut</i> ; 2, 9, 6	

$P = \langle CL, \mathit{LK}, Ucut angle, \ \ \mathcal{S} = \{ p \land q, \neg p \land q \}$			
1	$p \land q \Rightarrow p \land q$	Axiom	
2	$oldsymbol{ ho} \wedge oldsymbol{q} \Rightarrow eg(eg oldsymbol{ ho} \wedge oldsymbol{q})$	LK	
3	$oldsymbol{p} \wedge oldsymbol{q} \Rightarrow oldsymbol{q}$	LK	
4	$ eg p \land q \Rightarrow eg p \land q$	Axiom	
5	$ eg p \land q \Rightarrow eg (p \land q)$	LK	
6	$ eg p \land q \Rightarrow q$	LK	
7	$\Rightarrow \neg(p \wedge q) \leftrightarrow \neg(p \wedge q)$	LK	
8	$oldsymbol{p} \wedge oldsymbol{q} eq oldsymbol{q}$	<i>Ucut</i> ; 5, 7, 3	
9	$\Rightarrow eg(eg ho ho \wedge q) \leftrightarrow eg(eg ho \wedge q)$	LK	
10	$ eg p \land q eq q$	<i>Ucut</i> ; 2, 9, <mark>6</mark>	

р

$P = \langle GL, LK, Ucut \rangle, \ \mathcal{S} = \{ p \land q, \neg p \land q \}$			
1	$p \land q \Rightarrow p \land q$	Axiom	
2	$oldsymbol{ ho}\wedgeoldsymbol{q}\Rightarrow eg(eg oldsymbol{ ho}\wedgeoldsymbol{q})$	LK	
3	$\boldsymbol{p}\wedge \boldsymbol{q} \Rightarrow \boldsymbol{q}$	LK	
4	$ eg p \land q \Rightarrow eg p \land q$	Axiom	
5	$ eg p \land q \Rightarrow eg (p \land q)$	LK	
6	$ eg p \land q \Rightarrow q$	LK	
7	$\Rightarrow \neg(p \wedge q) \leftrightarrow \neg(p \wedge q)$	LK	
8	$oldsymbol{p} \wedge oldsymbol{q} eq oldsymbol{q}$	<i>Ucut</i> ; 5, 7, <mark>3</mark>	
9	$\Rightarrow eg(eg ho ho \wedge q) \leftrightarrow eg(eg ho \wedge q)$	LK	
10	$ eg p \land q eq q$	<i>Ucut</i> ; 2, 9, 6	

1/ I lout

$P = \langle GL, LK, Ucut \rangle, \ \mathcal{S} = \{ p \land q, \neg p \land q \}$			
1	$\boldsymbol{p}\wedge \boldsymbol{q} \Rightarrow \boldsymbol{p}\wedge \boldsymbol{q}$	Axiom	
2	$oldsymbol{ ho}\wedge oldsymbol{q}\Rightarrow eg(eg oldsymbol{ ho}\wedge oldsymbol{q})$	LK	
3	$oldsymbol{ ho} \wedge oldsymbol{q} \Rightarrow oldsymbol{q}$	LK	
4	$ eg p \land q \Rightarrow eg p \land q$	Axiom	
5	$ eg p \land q \Rightarrow eg (p \land q)$	LK	
6	$ eg p \land q \Rightarrow q$	LK	
7	$\Rightarrow eg (p \wedge q) \leftrightarrow eg (p \wedge q)$	LK	
8	$oldsymbol{p} \wedge oldsymbol{q} eq oldsymbol{q}$	<i>Ucut</i> ; 5, 7, 3	
9	$\Rightarrow eg (eg ho ho \wedge q) \leftrightarrow eg (eg ho \wedge q)$	LK	
10	$ eg p \land q eq q$	<i>Ucut</i> ; 2, 9, 6	

Neither [3] $p \land q \Rightarrow q$ nor [6] $\neg p \land q \Rightarrow q$ is finally derived, since they are respectively attacked by [5] $\neg p \land q \Rightarrow \neg(p \land q)$ and [2] $p \land q \Rightarrow \neg(\neg p \land q)$. Yet, these attacks cannot be applied *simultaneously*, since the attackers counter-attack each other. Thus $S \parallel_{\sim_{\mathbf{P}}} q$.

Soundness and Completeness II

Theorem

Let $P = \langle CL, LK, Ucut \rangle$. For a finite set S of formulas, the following are equivalent:

- $\bullet \,\, \mathcal{S} \mid \models_{\mathsf{P}} \psi$
- $\bullet \,\, \mathcal{S} \models^{\texttt{\tiny I}}_{\mathsf{CL},\mathsf{mcs}} \psi$
- $\bullet \,\, \mathcal{S} \models^{\tiny \ \ }_{\mathsf{CL},\{\mathsf{Ucut}\},\mathsf{grd}} \, \psi$
- $\bullet \hspace{0.1 in} \mathcal{S} \hspace{0.1 in} \hspace{-0.1 in} \sim_{\mathsf{CL},\{\mathsf{Ucut}\},\mathsf{prf}}^{\mathrm{\tiny I\!\!\!I}} \psi$
- $\bullet \hspace{0.1 in} \mathcal{S} \hspace{0.1 in} \hspace{-0.1 in} \sim_{\mathsf{CL},\{\mathsf{Ucut}\},\mathsf{stb}}^{\mathrm{\tiny (m)}} \psi$

Recall:

- $S \Vdash_P \psi$ if $\exists \Gamma \subseteq S$ s.t $\Gamma \Rightarrow \psi$ is sparsely finally accepted in a P-derivation.
- $\mathcal{S} \sim_{\mathfrak{L},\mathsf{mcs}}^{\mathbb{D}} \psi$ if $\psi \in \bigcap_{\mathcal{T} \in \mathsf{MCS}_{\mathfrak{L}}(\mathcal{S})} \mathsf{TC}_{\mathfrak{L}}(\mathcal{T}).$
- $\mathcal{S} \sim_{\mathfrak{L},\mathcal{A},sem}^{\square} \psi$ if $\forall \mathcal{E} \in \bigcap Sem(\mathcal{AF}_{\mathfrak{L},\mathcal{A}}(\mathcal{S})) \exists \mathcal{A} \in \mathcal{E} \text{ s.t. } Conc(\mathcal{A}) = \psi$.

Plan of Module 4

- General Introduction
 - Proof systems
 - Sequent calculi
- Proof Systems for Logic-Based Argumentation
 - Dynamic proof systems
 - Annotation-based systems
 - Other approaches

Enhancements of dynamic proof systems that allow to:

- 1. Express in the sequent-based language the updated statuses of the arguments.
- 2. Express rules for status revision and for final acceptability.
- 3. Keep the basic properties of the dynamic proof calculi.

Enhancements of dynamic proof systems that allow to:

- 1. Express in the sequent-based language the updated statuses of the arguments.
- 2. Express rules for status revision and for final acceptability.
- 3. Keep the basic properties of the dynamic proof calculi.

The Idea: Extending the sequents with annotations.

Annotated sequents: $\Gamma \Rightarrow^{[a]} \Delta$ (or: A[a]), where $a \in \{i, e, !, *\}$

(Denoting that the sequent is introduced, eliminated, finally accepted, or a don't care condition).

An *annotated dynamic calculus* \mathfrak{C} , based on a setting $P = \langle \mathfrak{L}, \mathcal{C}, \mathcal{A} \rangle$, contains the following rules:

Annotated Dynamic Calculi

An *annotated dynamic calculus* \mathfrak{C} , based on a setting $P = \langle \mathfrak{L}, \mathcal{C}, \mathcal{A} \rangle$, contains the following rules:

• Axioms and inference rules of C, where the conditions are annotated by [*] and the conclusion is annotated by [i].

$$\frac{\Gamma \Rightarrow^{[*]} \Delta, \psi \quad \Gamma \Rightarrow^{[*]} \Delta, \varphi}{\Gamma \Rightarrow^{[i]} \Delta, \psi \land \varphi}$$

(annotated version of $[\Rightarrow \land]$)

Annotated Dynamic Calculi

An *annotated dynamic calculus* \mathfrak{C} , based on a setting $P = \langle \mathfrak{L}, \mathcal{C}, \mathcal{A} \rangle$, contains the following rules:

• Axioms and inference rules of C, where the conditions are annotated by [*] and the conclusion is annotated by [i].

$$\frac{\Gamma \Rightarrow^{[*]} \Delta, \psi \quad \Gamma \Rightarrow^{[*]} \Delta, \varphi}{\Gamma \Rightarrow^{[i]} \Delta, \psi \land \varphi}$$

(annotated version of $[\Rightarrow \land]$)

• Attack rules based on *A*, for changing the annotations of attacked sequents from [i] to [e].

$$\frac{\Gamma_1 \Rightarrow^{[i]} \psi_1 \quad \psi_1 \Rightarrow^{[*]} \neg \bigwedge \Gamma_2 \quad \Gamma_2, \Gamma'_2 \Rightarrow^{[i]} \psi_2}{\Gamma_2, \Gamma'_2 \Rightarrow^{[e]} \psi_2}$$

(annotated version of Defeat)

• Annotation revision rules:

Reactivation rules: changing annotations from [e] back to [i].

$$\frac{\Gamma_1 \Rightarrow^{[e]} \psi_1 \quad \psi_1 \Rightarrow^{[*]} \neg \bigwedge \Gamma_2 \quad \Gamma_2, \Gamma'_2 \Rightarrow^{[e]} \psi_2}{\Gamma_2, \Gamma'_2 \Rightarrow^{[i]} \psi_2}$$

(reintroducing attacked sequents whose attackers are eliminated)

• Annotation revision rules:

Reactivation rules: changing annotations from [e] back to [i].

$$\frac{\Gamma_1 \Rightarrow^{[e]} \psi_1 \quad \psi_1 \Rightarrow^{[*]} \neg \bigwedge \Gamma_2 \quad \Gamma_2, \Gamma'_2 \Rightarrow^{[e]} \psi_2}{\Gamma_2, \Gamma'_2 \Rightarrow^{[i]} \psi_2}$$

(reintroducing attacked sequents whose attackers are eliminated)

Retrospective attack rules for allowing eliminated attackers, provided that the attackers can be reactivated (handling cycles of attacks).

$$\frac{\Gamma_1, \Gamma'_1 \Rightarrow^{[e]} \psi_1 \quad \psi_1 \Rightarrow^{[*]} \neg \bigwedge \Gamma_2 \quad \Gamma_2, \Gamma'_2 \Rightarrow^{[i]} \psi_2}{\Gamma_2, \Gamma'_2 \Rightarrow^{[e]} \psi_2}$$

(attack rule with eliminated attacker)

$$\frac{\underset{3 \Rightarrow [e]}{\overset{[e]}{\vdash} \psi_{3} \qquad \psi_{3} \Rightarrow^{[*]} \neg \bigwedge \Gamma_{1} \qquad \Gamma_{1}, \Gamma_{1}' \Rightarrow^{[e]} \psi_{1}}{\Gamma_{1}, \Gamma_{1}' \Rightarrow^{[i]} \psi_{1}}$$

(the eliminated attacker is reactivated)

• Final acceptability rules: (for premise-attack rules)

L

et Att(
$$\Gamma$$
) = { $\Delta \subseteq S \mid \Delta \vdash \neg \land \Gamma$ }. Then:

$$\Gamma \Rightarrow^{[i]} \psi$$
($\forall \Delta \in Att(\Gamma)$) $\Delta \Rightarrow^{[*]} \neg \land \Gamma$
[FA₁] $\frac{(\forall \Delta \in Att(\Gamma) \exists \Sigma \in Att(\Delta)) \Sigma \Rightarrow^{[!]} \neg \land \Delta}{\Gamma \Rightarrow^{[!]} \psi}$

<u>Intuition</u>: $\Gamma \Rightarrow \psi$ is finally accepted if: (1) it is introduced, (2) all its *S*-based attackers are produced in the derivation, and (3) each such attacker is counter-attacked by a finally accepted sequent.

• Final acceptability rules: (for premise-attack rules)

Let Att(
$$\Gamma$$
) = { $\Delta \subseteq S \mid \Delta \vdash \neg \land \Gamma$ }. Then:

$$[FA_{1}] \frac{ \left[\begin{array}{c} \downarrow \downarrow \downarrow \psi \\ (\forall \Delta \in \mathsf{Att}(\Gamma)) \Delta \Rightarrow^{[*]} \neg \bigwedge \Gamma \\ (\forall \Delta \in \mathsf{Att}(\Gamma) \exists \Sigma \in \mathsf{Att}(\Delta)) \Sigma \Rightarrow^{[!]} \neg \bigwedge \Delta \\ \Gamma \Rightarrow^{[!]} \psi \end{array} \right]}{\Gamma \Rightarrow^{[!]} \psi}$$

Intuition: $\Gamma \Rightarrow \psi$ is finally accepted if: (1) it is introduced, (2) all its S-based attackers are produced in the derivation, and (3) each such attacker is counter-attacked by a finally accepted sequent.

$$[\mathsf{FA}_2] \xrightarrow{\Rightarrow^{[1]} \psi} \qquad [\mathsf{FA}_3] \frac{\Gamma \Rightarrow^{[1]} \psi \quad \mathcal{S} \notin \mathsf{Att}(\Gamma)}{\Gamma \Rightarrow^{[1]} \psi}$$

Intuition: Introduced sequents that cannot be attacked are finally accepted.

• Final acceptability rules: (for premise-attack rules)

Let Att(
$$\Gamma$$
) = { $\Delta \subseteq S \mid \Delta \vdash \neg \land \Gamma$ }. Then:

$$[FA_{1}] \frac{ \begin{array}{c} \Gamma \Rightarrow^{[i]} \psi \\ (\forall \Delta \in \mathsf{Att}(\Gamma)) \Delta \Rightarrow^{[*]} \neg \bigwedge \Gamma \\ (\forall \Delta \in \mathsf{Att}(\Gamma) \exists \Sigma \in \mathsf{Att}(\Delta)) \Sigma \Rightarrow^{[i]} \neg \bigwedge \Delta \\ \Gamma \Rightarrow^{[i]} \psi \end{array}$$

<u>Intuition</u>: $\Gamma \Rightarrow \psi$ is finally accepted if: (1) it is introduced, (2) all its S-based attackers are produced in the derivation, and (3) each such attacker is counter-attacked by a finally accepted sequent.

$$[\mathsf{FA}_2] \xrightarrow{\Rightarrow^{[1]} \psi} \qquad [\mathsf{FA}_3] \frac{\Gamma \Rightarrow^{[1]} \psi \quad \mathcal{S} \notin \mathsf{Att}(\Gamma)}{\Gamma \Rightarrow^{[1]} \psi}$$

Intuition: Introduced sequents that cannot be attacked are finally accepted.

$$[\mathsf{FA}_4] \frac{\Gamma \Rightarrow^{[i]} \psi \quad \Gamma, \Gamma' \Rightarrow^{[i]} \phi}{\Gamma \Rightarrow^{[i]} \psi} \qquad [\mathsf{FA}_5] \frac{\Gamma_1 \Rightarrow^{[i]} \psi \quad \Gamma_2 \Rightarrow^{[i]} \phi \quad \Gamma_2 \Rightarrow^{[i]} \wedge \Gamma_1}{\Gamma_1 \Rightarrow^{[i]} \psi}$$

Intuition: If a sequent is finally derived, so is any sequent with a weaker support.

⁴ A formal description of the revision process is given in: O. Arieli, K. van Berkel, C. Straßer: Annotated sequent calculi for paraconsistent reasoning and their relations to logical argumentation. Proc. IJCAI'22, pp.2532–2538, 2022.

⁴ A formal description of the revision process is given in: O. Arieli, K. van Berkel, C. Straßer: Annotated sequent calculi for paraconsistent reasoning and their relations to logical argumentation. Proc. IJCAI'22, pp.2532–2538, 2022.

Annotated Dynamic Derivations

Derivations in an annotated dynamic calculus are a sequence of application of introduction, [retrospective] attack, and final acceptability rules, where each attack rule is followed by an annotation revision process, in which reactivation and reattack rules are applied if necessary.⁴

⁴ A formal description of the revision process is given in: O. Arieli, K. van Berkel, C. Straßer: Annotated sequent calculi for paraconsistent reasoning and their relations to logical argumentation. Proc. IJCAI'22, pp.2532–2538, 2022.

1	$q \Rightarrow^{[i]} q$	[Axiom]	(condition 1)
2	$p, eg p \Rightarrow^{[i]} eg q$	[LK]	(condition 2)
3	$oldsymbol{ ho}, eg p,oldsymbol{q} \Rightarrow^{[i]} eg q$	[LK]	(condition 2)

⁴ A formal description of the revision process is given in: O. Arieli, K. van Berkel, C. Straßer: Annotated sequent calculi for paraconsistent reasoning and their relations to logical argumentation. Proc. IJCAI'22, pp.2532–2538, 2022.

1	$q \Rightarrow^{[i]} q$	[Axiom]	(condition 1)
2	$oldsymbol{ ho}, eg oldsymbol{ ho} \Rightarrow^{[i]} eg oldsymbol{q}$	[LK]	(condition 2)
3	$oldsymbol{ ho}, eg p, oldsymbol{q} \Rightarrow^{[i]} eg q$	[LK]	(condition 2)
4	$\Rightarrow^{[i]} \neg (p \land \neg p)$	[LK]	
5	$\Rightarrow^{[i]} \neg (p \land \neg p \land q)$	[LK]	

⁴ A formal description of the revision process is given in: O. Arieli, K. van Berkel, C. Straßer: Annotated sequent calculi for paraconsistent reasoning and their relations to logical argumentation. Proc. IJCAI'22, pp.2532–2538, 2022.

1	$q \Rightarrow^{[\prime]} q$	[Axiom]	(condition 1)
2	$oldsymbol{ ho}, eg p \Rightarrow^{[i]} eg q$	[LK]	(condition 2)
3	$oldsymbol{ ho}, eg p,oldsymbol{q} \Rightarrow^{[i]} eg q$	[LK]	(condition 2)
4	$\Rightarrow^{[i]} \neg (p \land \neg p)$	[LK]	
5	$\Rightarrow^{[i]} \neg (p \land \neg p \land q)$	[LK]	
6	$\Rightarrow^{[!]} \neg(p \land \neg p)$	[FA ₂]	(condition 3)
7	$\Rightarrow^{[i]} \neg (p \land \neg p \land q)$	[FA ₂]	(condition 3)

⁴ A formal description of the revision process is given in: O. Arieli, K. van Berkel, C. Straßer: Annotated sequent calculi for paraconsistent reasoning and their relations to logical argumentation. Proc. IJCAI'22, pp.2532–2538, 2022.

1	$q \Rightarrow^{[\prime]} q$	[Axiom]	(condition 1)
2	$oldsymbol{ ho}, eg oldsymbol{ ho} \Rightarrow^{[l]} eg oldsymbol{q}$	[LK]	(condition 2)
3	$p, eg p, q \Rightarrow^{[i]} eg q$	[LK]	(condition 2)
4	$\Rightarrow^{[i]} \neg (p \land \neg p)$	[LK]	
5	$\Rightarrow^{[i]} \neg (p \land \neg p \land q)$	[LK]	
6	$\Rightarrow^{[!]} \neg(p \land \neg p)$	[FA ₂]	(condition 3)
7	$\Rightarrow^{[!]} \neg (p \land \neg p \land q)$	[FA ₂]	(condition 3)
8	$q \Rightarrow^{[!]} q$	$[FA_1]$	

⁴ A formal description of the revision process is given in: O. Arieli, K. van Berkel, C. Straßer: Annotated sequent calculi for paraconsistent reasoning and their relations to logical argumentation. Proc. IJCAI'22, pp.2532–2538, 2022.

Annotated Dynamic Derivations

 $p, \neg p, q \not \succ_{\langle \mathsf{CL}, \mathsf{LK}, \mathsf{Ucut} \rangle} p \qquad p, \neg p, q \not \succ_{\langle \mathsf{CL}, \mathsf{LK}, \mathsf{Ucut} \rangle} \neg p$

Annotated Dynamic Derivations

 $p, \neg p, q \not\vdash_{\langle CL, LK, Ucut \rangle} p \qquad p, \neg p, q \not\vdash_{\langle CL, LK, Ucut \rangle} \neg p$ $1 \qquad p \Rightarrow^{[i]} p \qquad [Axiom]$ $2 \qquad \neg p \Rightarrow^{[i]} \neg p \qquad [Axiom]$

Annotated Dynamic Derivations

 $p, \neg p, q \not\models_{\langle \mathsf{CL}, \mathsf{LK}, \mathsf{Ucut} \rangle} p \qquad p, \neg p, q \not\models_{\langle \mathsf{CL}, \mathsf{LK}, \mathsf{Ucut} \rangle} \neg p$

1	$ ho \Rightarrow^{[i]} ho$	[Axiom]
2	$ eg p \Rightarrow^{[\prime]} eg p$	[Axiom]
3	$p \Rightarrow^{[i]} \neg \neg p$	[LK]
4	$ eg \neg eg p \Rightarrow^{[i]} p$	[LK]
5	$ eg p \Rightarrow^{[e]} eg p$	[Ucut] 1, 3, 4, <mark>2</mark>

 $p, \neg p, q \not\models_{\langle \mathsf{CL}, \mathsf{LK}, \mathsf{Ucut} \rangle} p \qquad p, \neg p, q \not\models_{\langle \mathsf{CL}, \mathsf{LK}, \mathsf{Ucut} \rangle} \neg p$

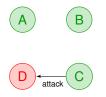
1	$ ho \Rightarrow^{[i]} ho$	[Axiom]
2	$ eg p \Rightarrow^{[i]} eg p$	[Axiom]
3	$ ho \Rightarrow^{[i]} \neg \neg ho$	[LK]
4	$ eg \neg ho p \Rightarrow^{[i]} p$	[LK]
5	$ eg p \Rightarrow^{[e]} eg p$	[Ucut] 1, 3, 4, 2
6	$ ho \Rightarrow^{[e]} ho$	[Retro Ucut] 5, 2, 2, 1
7	$\neg ho \Rightarrow^{[i]} \neg ho$	[React] 6, 3, 4, 5

 $p, \neg p, q \not\models_{\langle \mathsf{CL}, \mathsf{LK}, \mathsf{Ucut} \rangle} p \qquad p, \neg p, q \not\models_{\langle \mathsf{CL}, \mathsf{LK}, \mathsf{Ucut} \rangle} \neg p$

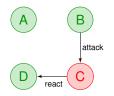
1	$ ho \Rightarrow^{[i]} ho$	[Axiom]
2	$ eg p \Rightarrow^{[i]} eg p$	[Axiom]
3	$ ho \Rightarrow^{[i]} \neg \neg ho$	[LK]
4	$ eg \neg eg p \Rightarrow^{[i]} p$	[LK]
5	$ eg p \Rightarrow^{[e]} eg p$	[Ucut] 1, 3, 4, 2
6	$ ho \Rightarrow^{[e]} ho$	[Retro Ucut] 5, 2, 2, 1
7	$ eg p \Rightarrow^{[i]} eg p$	[React] 6, 3, 4, 5
8	$ eg p \Rightarrow^{[e]} eg p$	[Retro Ucut] 6, 3, 4, 7
9	$oldsymbol{ ho} \Rightarrow^{[i]} oldsymbol{ ho}$	[React] 8, 2, 2, 6

<u>Recall</u>: A derivation is \mathcal{D} coherent, if Attack $(\mathcal{D}) \cap \text{Elim}(\mathcal{D}) = \emptyset$. In the annotated case this means that the end of the revision process, following an attack of an introduced sequent, the attacker is not eliminated.

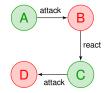
<u>Recall</u>: A derivation is \mathcal{D} coherent, if Attack $(\mathcal{D}) \cap \text{Elim}(\mathcal{D}) = \emptyset$. In the annotated case this means that the end of the revision process, following an attack of an introduced sequent, the attacker is not eliminated.



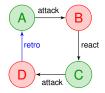
<u>Recall</u>: A derivation is \mathcal{D} coherent, if Attack $(\mathcal{D}) \cap \text{Elim}(\mathcal{D}) = \emptyset$. In the annotated case this means that the end of the revision process, following an attack of an introduced sequent, the attacker is not eliminated.



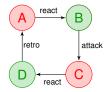
<u>Recall</u>: A derivation is \mathcal{D} coherent, if Attack $(\mathcal{D}) \cap \text{Elim}(\mathcal{D}) = \emptyset$. In the annotated case this means that the end of the revision process, following an attack of an introduced sequent, the attacker is not eliminated.



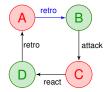
<u>Recall</u>: A derivation is \mathcal{D} coherent, if Attack $(\mathcal{D}) \cap \text{Elim}(\mathcal{D}) = \emptyset$. In the annotated case this means that the end of the revision process, following an attack of an introduced sequent, the attacker is not eliminated.



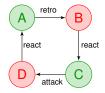
<u>Recall:</u> A derivation is \mathcal{D} coherent, if Attack $(\mathcal{D}) \cap \text{Elim}(\mathcal{D}) = \emptyset$. In the annotated case this means that the end of the revision process, following an attack of an introduced sequent, the attacker is not eliminated.



<u>Recall:</u> A derivation is \mathcal{D} coherent, if Attack $(\mathcal{D}) \cap \text{Elim}(\mathcal{D}) = \emptyset$. In the annotated case this means that the end of the revision process, following an attack of an introduced sequent, the attacker is not eliminated.

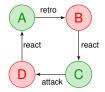


<u>Recall</u>: A derivation is \mathcal{D} coherent, if Attack $(\mathcal{D}) \cap \text{Elim}(\mathcal{D}) = \emptyset$. In the annotated case this means that the end of the revision process, following an attack of an introduced sequent, the attacker is not eliminated.



<u>Recall</u>: A derivation is \mathcal{D} coherent, if Attack $(\mathcal{D}) \cap \text{Elim}(\mathcal{D}) = \emptyset$. In the annotated case this means that the end of the revision process, following an attack of an introduced sequent, the attacker is not eliminated.

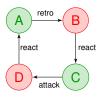
Even attacking cycles:



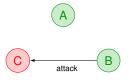
Alternation: At each stage half of the arguments are introduced and the other half of arguments are eliminated. None of them is finally derived.

<u>Recall</u>: A derivation is \mathcal{D} coherent, if Attack $(\mathcal{D}) \cap \text{Elim}(\mathcal{D}) = \emptyset$. In the annotated case this means that the end of the revision process, following an attack of an introduced sequent, the attacker is not eliminated.

Even attacking cycles:

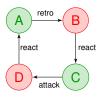


Alternation: At each stage half of the arguments are introduced and the other half of arguments are eliminated. None of them is finally derived.

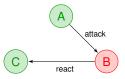


<u>Recall</u>: A derivation is \mathcal{D} coherent, if Attack $(\mathcal{D}) \cap \text{Elim}(\mathcal{D}) = \emptyset$. In the annotated case this means that the end of the revision process, following an attack of an introduced sequent, the attacker is not eliminated.

Even attacking cycles:

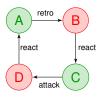


Alternation: At each stage half of the arguments are introduced and the other half of arguments are eliminated. None of them is finally derived.

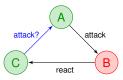


<u>Recall</u>: A derivation is \mathcal{D} coherent, if Attack $(\mathcal{D}) \cap \text{Elim}(\mathcal{D}) = \emptyset$. In the annotated case this means that the end of the revision process, following an attack of an introduced sequent, the attacker is not eliminated.

Even attacking cycles:

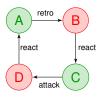


Alternation: At each stage half of the arguments are introduced and the other half of arguments are eliminated. None of them is finally derived.

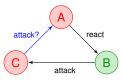


<u>Recall</u>: A derivation is \mathcal{D} coherent, if Attack $(\mathcal{D}) \cap \text{Elim}(\mathcal{D}) = \emptyset$. In the annotated case this means that the end of the revision process, following an attack of an introduced sequent, the attacker is not eliminated.

Even attacking cycles:

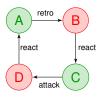


Alternation: At each stage half of the arguments are introduced and the other half of arguments are eliminated. None of them is finally derived.

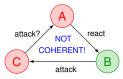


<u>Recall</u>: A derivation is \mathcal{D} coherent, if Attack $(\mathcal{D}) \cap \text{Elim}(\mathcal{D}) = \emptyset$. In the annotated case this means that the end of the revision process, following an attack of an introduced sequent, the attacker is not eliminated.

Even attacking cycles:

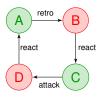


Alternation: At each stage half of the arguments are introduced and the other half of arguments are eliminated. None of them is finally derived.



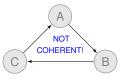
<u>Recall</u>: A derivation is \mathcal{D} coherent, if Attack $(\mathcal{D}) \cap \text{Elim}(\mathcal{D}) = \emptyset$. In the annotated case this means that the end of the revision process, following an attack of an introduced sequent, the attacker is not eliminated.

Even attacking cycles:



Alternation: At each stage half of the arguments are introduced and the other half of arguments are eliminated. None of them is finally derived.

Odd attacking cycles:



No coherent derivation is allowed.

Dynamic Derivations and the Induced AF, Revisited

In all the examples stable extensions of the $\mathcal{AF}(\mathcal{D})$ are obtained. This is not a coincidence:

Dynamic Derivations and the Induced AF, Revisited

In all the examples stable extensions of the $\mathcal{AF}(\mathcal{D})$ are obtained. This is not a coincidence:

Proposition

For an annotated dynamic derivation D, let Accept(D) be the derived sequents in D whose most updated status is [i] or [!]. Then:

- Accept(\mathcal{D}) is conflict-free in $\mathcal{AF}(\mathcal{D})$.
- If \mathcal{D} is coherent, then Accept (\mathcal{D}) is a stable extension of $\mathcal{AF}(\mathcal{D})$.

Dynamic Derivations and the Induced AF, Revisited

In all the examples stable extensions of the $\mathcal{AF}(\mathcal{D})$ are obtained. This is not a coincidence:

Proposition

For an annotated dynamic derivation D, let Accept(D) be the derived sequents in D whose most updated status is [i] or [!]. Then:

- Accept(\mathcal{D}) is conflict-free in $\mathcal{AF}(\mathcal{D})$.
- If \mathcal{D} is coherent, then Accept (\mathcal{D}) is a stable extension of $\mathcal{AF}(\mathcal{D})$.

Proposition

- An annotated derivation \mathcal{D} is saturated, if the final acceptability rules are applied to every derived sequent in \mathcal{D} to which it can be applied. - Let Final(\mathcal{D}) be the derived sequents in \mathcal{D} whose status is [!]. If \mathcal{D} is saturated, then Final(\mathcal{D}) is the grounded extension of $\mathcal{AF}(\mathcal{D})$.

Plan of Module 4

- General Introduction
 - Proof systems
 - Sequent calculi
- Proof Systems for Logic-Based Argumentation
 - Dynamic proof systems
 - Annotation-based systems
 - Other approaches

References to Other Argumentative Proof Systems

- P. Besnard, C. Cayrol, M. Lagasquie-Schiex. Logical theories and abstract argumentation: A survey of existing works. Journal of Argument & Computation 11(1–2):41–102, 2020. [Survey, Applications]
- E .Black, N. Maudet, S. Parsons. *Argumentation-based dialogue*. Handbook of Formal Argumentation, Volume II, pp.511–576, 2021. [Survey, Dialogue systems]
- K. Cyras, X. Fan, C. Schulz, F. Toni. Assumption-based argumentation: Disputes, explanations, preferences. Handbook of Formal Argumentation, Volume I, pp.365–408, 2018. [Dispute Trees, ABA]
- M. Caminada. Argumentation semantics as formal discussion. Handbook of Formal Argumentation, Volume I, pp.487–518, 2018. [Dialogue, AAF]
- S. Modgil, M. Caminada. Proof theories and algorithms for abstract argumentation frameworks. Argumentation in Artificial Intelligence, pp.105–129, Springer, 2009. [AAF]