Argumentation-based Approaches to Paraconsistency
SPLogIC, CLE Unicamp, Feb. 2023 (Ofer Arieli)
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Proof Systems

We shall use proof systems for two purposes:

@ Constructing arguments in Arg,(S) for a given base logic
£ = (L,F) and a set S of assumptions.

© Computing consequences of l’VE,A,sem (for a base logic £,
attack rules A, semantics sem, and x € {N, A, U}),
the entailments that are induced by logic-based
argumentation frameworks.
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Proof Systems

We shall use proof systems for two purposes:

@ Constructing arguments in Arg,(S) for a given base logic
£ = (L,F) and a set S of assumptions.

© Computing consequences of yngsem (for a base logic £,
attack rules A, semantics sem, and x € {N, A, U}),
the entailments that are induced by logic-based
argumentation frameworks.

Purpose 1 may be realized by different types of ‘standard’ proof
systems (Hilbert-style, Gentzen-style, Tableaux methods, etc.).

Here we incorporate systems that are based on sequent calculi.!

Purpose 2 is realized here by dynamic sequent calculi, allowing for
non-monotonic derivation processes.

1Or hypersequent calculi, when arguments are represented by hypersequents.
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Example: The Sequent Calculus LK for CL

Axioms: ¢ =1

Structural Rules:

Weakening [W]: %
Logical Rules:
vel BEESTEE B RS
[-=] =49 (=] ro=A

r—y=A M= A
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Derivations in LK

A derivation tree in LK of one side of one of De Morgan’s laws:

= =
S
Swee 0 S B
sv-pp OV e BY
= Vo, A =]
“Whg) = Vg 7
[=2]

= (Y Ag) DYV g

@ Each leaf (i.e., a most-upper line) of the tree contains an instance
of the axiom schema of LK.

@ The root (i.e. the bottom line) contains the proven sequent.

@ Transitions from one node of the tree to another are justified by

applications of the inference rules.
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Another Example: Construction of Arguments in J$

Recall (Module 1): JS = PAC™® = ({t,f, T}, {t, T},{V,A,3,~,F,B
3
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Another Example: Construction of Arguments in JS

Recall (Module 1): JS = PAC™® = ({t,f, T}, {t, T},{¥, A, 3, ~,F,B})

A sound & complete sequent calculus for Jg:
@ LK without the negation rules,
@ Additional axiom achema: = 1, )
@ The following logical rules for —, F, and B:

) RS S e
S ﬁsﬁ,;:(ﬁ A wr);w;» N = AA,:(E,/? Z)

et (S e A e
o= r,rﬁ’(ﬁ ;ww?jA +-31 7 :;ie(@ gz)TK’A
[F=] rF=A [=-F] [=A-F

[=B] T=A,B
[=-B] I=A,-B

@ For a sound & complete calculus for LPFE, remove the rules for >. 6/39



Extension to 4All
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Extension to 4All

A sound & complete sequent calculus for 4All:

@ The sequent calculus for JE without the axioms: = v, =)
@ The following logical rules for —, ®, &, and N:

g
[--=]
[©=]
[-®=]
[®=]

[-®=]

N=]
[-N=]

M= A -
M—=)=A
M= Ay
M—-—yY=A
My, o= A
NLYye=A
r,‘ﬂ@b,‘ﬂQD = A
r’_ﬂ(lb & 97) = A
My=A T,¢=A
Nyvoe=A

M-vYv=A T -p=A

M-(op)=A
MNN= A
F,AﬂPJ = A

[=-]

M-y =A

F= A,

ry=A

M= A-—9

Mr=A¢yv I'=Ap

MN=AYv®¢
Fr=A~¢v T=A-p

F=A4,-(v®¢)
A

Mr=AYvdp

F=A4,~%, ¢

F=A4A,-(v &)
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o Other approaches
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Dynamic Proof Systems

@ Dynamic sequent calculus: sequent calculus + attack rules.
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@ accepted (i.e., it is derived from the premises and there is
no known reason to discharge it),
e eliminated (i.e., it is attacked by an accepted sequent), or

e finally accepted (i.e., it is accepted and cannot be eliminated
in any extension of the derivation).
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Dynamic Proof Systems

@ Dynamic sequent calculus: sequent calculus + attack rules.

@ The set of derived formulas does not monotonically grow
in the size of the assumptions;
Derived formulas may be ‘discharged’ when the derivation
progresses.

@ At any stage of the derivation a derived sequent may be:
@ accepted (i.e., it is derived from the premises and there is

no known reason to discharge it),
e eliminated (i.e., it is attacked by an accepted sequent), or

e finally accepted (i.e., it is accepted and cannot be eliminated
in any extension of the derivation).

@ Stp ¢ [S [p ] if there is a [dynamic] derivation in the [dynamic]
proof system P, in which I' = ¢ is finally derived for some I' C S.

9/39



Dynamic Derivations

evaluation
process
what counts
as derived?
dynamics
apply inferences . .
PRy and simple coherence dynamic
- mpl N
iminati i derivation rivation
elimination rules ! derivatio
| final

| acceptability|
A

|

I A setting for a dynamic derivation consists of:
|

b the underlying logic

Leoa S&C sequent calculus for that logic entailment
|+ Asetof attack rules

|

_________________________________ ) P
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Simple Derivations

Example: A dynamic sequent calculus based on:

@ CL and its sequent calculus LK,

M= 1= AT AT =1 T, T, = o
° M2, # 2
@ The assumptions S = {p, —p, q}

Ucut
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Simple Derivations

Example: A dynamic sequent calculus based on:
@ CL and its sequent calculus LK,
M= 1= AT AT, =1 T2, 5 = e Ut
° Mo, T5 # 1o
@ The assumptions S = {p, —p, q}

A [simple] derivation: (Sequence of tuples of the form (i, s, J))

1 g=q Axiom
2 p=p Axiom
3 = p,—p [=-].2
4 =pV-p [=V],3
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Simple Derivations

Example: A dynamic sequent calculus based on:
@ CL and its sequent calculus LK,
M= 1= AT AT, =1 T2, 5 = e
° M2, # 2
@ The assumptions S = {p, —p, q}

Ucut

A [simple] derivation: (Sequence of tuples of the form (i, s, J))

1 q9=q Axiom
2 p=p Axiom
3 =p-p [=-].2
4 =pV-p [=V],3
5 -p=-p Axiom

|

The derived sequents in Tuples 2 and 5 are conflicting.
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Simple Derivations

Example: A dynamic sequent calculus based on:

@ CL and its sequent calculus LK,

M= 1= AT AT =1 T, T, = o
° F2,T5 # 2
@ The assumptions S = {p, —p, q}

Ucut

A [simple] derivation: (Sequence of tuples of the form (i, s, J))

1 g=q Axiom

2 p=p Axiom

3 = p,—p [=-].2

4 =pV-p [=V],3

5 —-p = —p Axiom

6 p#p Ucut 5,5,5,2
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Simple Derivations

Example: A dynamic sequent calculus based on:
@ CL and its sequent calculus LK,
M= 1= AT AT, =1 T2, 5 = e
° M2, # 2
@ The assumptions S = {p, —p, q}

Ucut

A [simple] derivation: (Sequence of tuples of the form (i, s, J))

1 q9=q Axiom

2 p=p Axiom

3 =p-p [=-].2

4 =pV-p [=V],3

5 —“p=p Axiom

6 p#Ap Ucut 5,5,5,2
I

At this point, the derived p = p should be discharged.

11/39



A [simple] derivation (Cont’d):

— 0 O A~ WD =

g=q
p=p
= p,—p
= pV-p
—p = -p
p#p

Axiom

Axiom

[j ﬂ], 2
[=V],3
Axiom

Ucut 5,5,5,2

At this point, the derived p = p should be discharged.
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A [simple] derivation (Cont’d):

1

— 0 OB~ WD

q=q
p=p
= p,—p
=pV-p
—p=-p
p#p

Axiom

Axiom
[=-].2
[=V],3
Axiom

Ucut 5,5,5,2

... but the reverse attack may also be produced:
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A [simple] derivation (Cont’d):

1

© 00 N O Ok~ W N

q=q
p=p
= p,—p
=pV-p
—p=-p
p#p
p=——p
——p=p
P # P

Axiom

Axiom

[=> —\], 2
[=V],3
Axiom

Ucut 5,5,5,2
[..]

]
Ucut2,7,8,5
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A [simple] derivation (Cont’d):

1

~N O 00N O Ok~ WD

q=q
p=p
= p,—p
=pV-p
-p = -p
p#p
p=—-p
P = p
—p A P

Axiom

Axiom

[=-l],2

[=V],3

Axiom

Ucut 5,5,5,2

[..]

[.]

Ucut2,7,8,5

What is the status of the sequents at this point?
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A [simple] derivation (Cont’d):

1

© 00 N O Ok~ W N

Intuition:

q=q
p=p

= p,—p
= pV-p
—p=-p
p#p

p=—-p
P = p
—p A P

Axiom

Axiom

[=> —\], 2
[=V],3
Axiom

Ucut 5,5,5,2
[..]

]
Ucut2,7,8,5

e p = pand —-p = —p attack each other; they should not be finally derived.

e The sequent = p Vv —pis not attacked, thus it should be finally derived.
e g = qis defended by = p Vv —p, thus it should be finally derived as well.
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A [simple] derivation (Cont’d):

q=q
p=p

= p,—p
= pV-p
—p=-p
p#p

p=—-p
P = p
—p A P

© 00 NO O~ WD =

Intuition:

Axiom

Axiom

[=> —\], 2
[=V],3
Axiom

Ucut 5,5,5,2
[..]

]
Ucut2,7,8,5

e p = pand —-p = —p attack each other; they should not be finally derived.
e The sequent = p Vv —pis not attacked, thus it should be finally derived.
e g = qis defended by = p Vv —p, thus it should be finally derived as well.

e We need an evaluation process for determining the sequents’ statuses.
e Dynamic derivation = simple derivation + evaluation process for controlling

the derivation flow.
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What Counts as Derived and When?

Top-Down Evaluation Algorithm

function Evaluate(D) /* D — a simple derivation */
Elim := := Derived := (;
while (D is not empty) do { /* top-down iteration */
if (Top(D) = (i, A,J)) /* sequent introduction tuple */
Derived := Derived U {A};
if (Top(D) = (i, A,J)) /* sequent elimination tuple */

if (B attacks A and B ¢ Elim)
Elim := Elim U {A};

D :=Tail(D); }
Accept := Derived — Elim;
return (Elim, , Accept)

Evaluation procedure for a simple derivation D
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The derivation (Cont’d):

© 00N O O~ WD =

I

g=q
p=p

= p,—p
= pV-p
—p=-p
p#p

p=——p
P =P
—p # =P

Evaluation:

Derived
Elim

Accept

—p = p
p=p

Axiom

Axiom
[=-l.2
[=V],3
Axiom

Ucut 5,5,5,2
[]

[--]
Ucut 2,7,8,5
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The derivation (Cont’d):

=
-

© 00N O O~ W=

Evaluation:

g=q
p=p

= p,—p
= pV-p
—p=-p
p#p

p=——p
P =P
—p # =P

Axiom

Axiom
[=-l.2
[=V],3
Axiom

Ucut 5,5,5,2
[]

[--]
Ucut 2,7,8,5

Derived —-—p=p, p= —p,
Elim -p=-p
p=p

Accept
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The derivation (Cont’d):

1 qg=4q Axiom
2 p=p Axiom
3 =p-p [=-],2
4 =pVv-p [=V],3
5 —-p=-p Axiom
— 6 p#Ap Ucut 5,5,5,2 p = pis not eliminated since —p = —p was eliminated

7 p=—p [..]
8 ——p=p [..]
9 —p & —p Ucut2,7,8,5

Evaluation:

Derived —-—p=p, p= —p,
Elim -p=-p

p=p
Accept
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The derivation (Cont’d):

= 1 q=q Axiom
= 2 p=p Axiom
— 3 = p,—p [=-],2
— 4 =pV-p [=V],3
— b5 -p = —p Axiom
6 pAp Ucut 5,5,5,2
7 p=——p [--]
8 ——p=p [--]
9 -p % —p Ucut2,7,8,5
Evaluation:

Derived —-—p=p, p= ——p, "p=—-p, =pV-p, ...
Elim -p=-p

p=p
Accept

14/39



The derivation (Cont’d):

1 g=q Axiom

2 p=p Axiom

3 =pp [=-].2

4 =pVv-p [=V],3

5 —-p = —p Axiom

6 p#Ap Ucut 5,5,5,2

7 p=—-p [..]

8 ——p=p [..]

9 —p A —p Ucut2,7,8,5
Evaluation:

Derived —-—p=p, p= ——p, "p=—-p, =pV-p, ...
Elim -p=-p

p=p
Accept  Derived \ {—-p = —p}
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Dynamic Derivations

A (£,C, A)-based dynamic derivation for S is a simple derivation D
of one of the following forms:
@ D= (T),where T = (1,s,J) is a proof tuple.
@ D extends a dynamic derivation by introducing tuples whose
sequents are not in Elim(D).

@ D extends a dynamic derivation by eliminating tuples, such that:
1. D is coherent [Attack(D) N Elim(D) = 0],
2. (S-based) attackers are not attacked by accepted sequents.

O.Arieli, C.StraBer: Logical argumentation by dynamic proof systems. Theoretical Computer Science 781: 63-91, 2019.
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Dynamic Derivations

A (£,C, A)-based dynamic derivation for S is a simple derivation D
of one of the following forms:

@ D= (T),where T = (1,s,J) is a proof tuple.
@ D extends a dynamic derivation by introducing tuples whose
sequents are not in Elim(D).

@ D extends a dynamic derivation by eliminating tuples, such that:
1. D is coherent [Attack(D) N Elim(D) = 0],
2. (S-based) attackers are not attacked by accepted sequents.

A sequent (argument) A is finally derived in a dynamic derivation D,
if T(s) = (i,s,J) is accepted in D, and D cannot be extended to any
derivation for S, in which T(s) is eliminated.

S pp ¢ if there is a dynamic derivation for S, based on P = (£,C, A),
in which I' = ¢ is finally derived for some I' C S.

O.Arieli, C.StraBer: Logical argumentation by dynamic proof systems. Theoretical Computer Science 781: 63-91, 2019.
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Back to the Running Example; S = {p, —p, q}

1.S¥pand S| —p
p = p and -p = —p attack each other so they cannot be finally accepted:
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Back to the Running Example; S = {p, —p, q}

1. S pand S -p

p = p and -p = —p attack each other so they cannot be finally accepted:

1 g=4q Axiom

2 p=p Axiom

3 =pp [=-],2

4 =pV-p [=V],3

5 -p=-p Axiom

6 p#p Ucut 5,5,5,2

Attack : —p= —-p
Elim: p=p
Accept : Derived \ {p = p}
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Back to the Running Example; S = {p, —p, q}

1. S pand S -p

p = p and -p = —p attack each other so they cannot be finally accepted:

1 g=q Axiom 1 q=q
2 p=p Axiom 2 p=p
3 = p,—p [=-],2 3 = p,7p
4 =pv-p [=V].3 4 =pVv-p
5 -p = —p Axiom 5 —-p = —p
6 p#p Ucut 5,5,5,2 6 p#pP
7 p = —-—p
8 —p=p
9 P # —p
Attack: -p= —p Attack: p=p
Elim: p=p Elim: -p=-p

Axiom

Axiom

[:> j]7 2
[=V],3
Axiom

Ucut 5,5,5,2
[..]

[...]
Ucut2,7,8,5

Accept : Derived \ {p = p} Accept : Derived \ {-p = —p}
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Back to the Running Example; S = {p, —p, q}

2.S~pVv-p

= p V —p is derived and cannot be attacked (its support is empty), therefore
it is finally accepted.
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3.8kq

g = —q is defended against all its S-based attackers by a finally accepted
argument, therefore it is also finally accepted.
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Back to the Running Example; S = {p, —p, q}

2.S~pVv-p

= p V —p is derived and cannot be attacked (its support is empty), therefore
it is finally accepted.

3.8kq

g = —q is defended against all its S-based attackers by a finally accepted
argument, therefore it is also finally accepted.

1

2
3
4

q=q
p=p
= p,—p
=pV-p

Axiom
Axiom
[:> j]7 2
[=V],3
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Back to the Running Example; S = {p, —p, q}

2.S~pVv-p

= p V —p is derived and cannot be attacked (its support is empty), therefore
it is finally accepted.

3.8kq

g = —q is defended against all its S-based attackers by a finally accepted
argument, therefore it is also finally accepted.

1

N o ok W N

9=q
p=p
= p,—p
=pV-p
p,—p = —q
-q = —-q
q#q

Axiom
Axiom
[:>‘j]72
[=V],3

[-]

Axiom

Ucut 5,6,6, 1
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Back to the Running Example; S = {p, —p, q}

2.S~pVv-p

= p V —p is derived and cannot be attacked (its support is empty), therefore
it is finally accepted.

3.8kq

g = —q is defended against all its S-based attackers by a finally accepted
argument, therefore it is also finally accepted.

1

0 N O O~ WD

qg=4q Axiom
p=p Axiom

= p,—p [=-].2
=pVv-p [=V]3
p,—p=—q [.]

-q = q Axiom
qg#4q Ucut 5,6,6,1

pP,—p 7€> -q Ucut ‘1,',', 5
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Back to the Running Example; S = {p, —p, q}

2.S~pVv-p

= p V —p is derived and cannot be attacked (its support is empty), therefore
it is finally accepted.

3.8kq

g = —q is defended against all its S-based attackers by a finally accepted
argument, therefore it is also finally accepted.

1 g=9q Axiom 9 p,p,g=-q [.]

2 p=p Axiom 10 9g#4q Ucut 9,6,6,1
3 =p-p [=-].2

4 =pv-p [=V],3

5 p,p=-q [.]

6 -g=—q Axiom

7 g#4q Ucut 5,6,6,1

8 p,-p#-q Ucut4,. -5
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Back to the Running Example; S = {p, —p, q}

2.S~pVv-p

= p V —p is derived and cannot be attacked (its support is empty), therefore
it is finally accepted.

3.8kq

g = —q is defended against all its S-based attackers by a finally accepted
argument, therefore it is also finally accepted.

1 g=9q Axiom 9 p,p,g=-q [.]

2 p=p Axiom 10 9g#4q Ucut 9,6,6,1

3 =p,p [=-],2 11 p,-p,g# —-q Ucut4,- -9

4 =pv-p [=V],3 attackers of g = g are eliminated
5 p,p=-q [.]

6 -g=—q Axiom

7 g#4q Ucut 5,6,6,1

8 p,-p#-q Ucut4,. -5
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Another Example

Logic with weak negation (p t/ —p, =p I/ p), where p t/ =—p; Attack by Defeat.
S ={p,—p,~—p,~——p,~———p}, Ai=-"p=-'p
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1 Ao Axiom

2 A4 Axiom

3 Ao Axiom

4 Al Def, 3, 2
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7 A Def,5,3
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Another Example

Logic with weak negation (p t/ —p, =p I/ p), where p t/ =—p; Attack by Defeat.
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Derivation-Based Argumentation Frameworks

AF (D) = (Derived(D), Attack(D)): An AF induced by a [simple] derivation D.
e A e Derived(D) if (i, A,J) in D, and

e (A, B) € Attack(D) if (i, B,J) in D and the attacker in J is A.
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Derivation-Based Argumentation Frameworks

AF (D) = (Derived(D), Attack(D)): An AF induced by a [simple] derivation D.
e Ac Derived(D) if (i, A,J) in D, and
e (A, B) € Attack(D) if (i, B, J) in D and the attacker in J is A.

Example (from the previous slide):

1 Ao Axiom

2 A Axiom

3 A Axiom

4 Ay Def, 3,2

5 ﬁ Axiom @ @ @ @ @
6 Ao Def, 2,1

7 As Def, 5,3

8 Ay Axiom

9 A;  Def,3,2

10 A;  Def,8,5

Proposition

For every simple derivation D the set Accept(D) is conflict-free in AF (D).
If D is coherent, Accept(D) is a stable extension of AF (D).
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Some Comments and Properties of |~p

P = (£,C, A) — a setting for a dynamic proof system.

(Recall: C is sound and complete for £ = (L, F): T F Y iff ke T = ¢))
Some properties of ~p will be shown for SAC (Support Attacking, and
Contrapositive) settings:

A SAC setting P = (£,C, .A) meats the following conditions:

1. C admits contraposition:
If e A = —\©, then for every © C © and A’ C A it holds that
Fe (A\ANYUO = - A((©\©)uA).

2. A consists only of attack rules in the supports of the arguments
(Ucut, Def, ConUcut, but not Reb or their direct versions).

(Note: any calculus with [-=], [= -], [A =] admits contraposition)
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Some Comments and Properties of |~p

1. Notes on Final Acceptability

Proposition

e If A is finally accepted in D, then it is finally accepted in any
extension of D.

Indeed, if A is not finally accepted in an extension D’ of D, there is
some extension D” of D’ in which A is eliminated. Since D" is also
an extension of D, A cannot be finally accepted in D. O

Proposition

e LetP isa SAC. If Ais finally accepted in a dynamic P-derivation D,
then every dynamic P-derivation D' (for the same assumptions S)
can be extended to a derivation D" in which A is finally accepted.
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Properties of |~p

2. pand -
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If A consists only of attacks in premises (as in SACs), then:
1. bp o iff F, and

2. C is weakly complete for \~p: It holds that |~p 1) iff |~ =).

Proposition
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Properties of |~p

3. ~p and Inconsistency Handling
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Properties of |~p

3. ~p and Inconsistency Handling

Proposition (no conflicts are finally derivable)
It is not the case that S ~p ¢ and S p —p.

Proposition (pre-paraconsistency)
Ift- is pre-paraconsistent (p, —p t/ q) then so is |~p.

Proposition (non-interference)

IfP is a SAC and £ is uniform 'then |~ satisfies non-interference 2
with respect to finite sets of assumptions.

Proposition (crash resistance)

IfP is a SAC and £ is uniform, there is no p-contaminating set. 3

! If Sy U {¢} || Sz and S5 is --consistent, then Sy + ¢ iff Sy, So - ¢.
IfS1 U {#} || So,then Sy |~p ¢ iff Sy, So |~p ¢.
That is: there is no S s.t. for every S’ where S || S’ it holds that S |~ v iff S, S’ |~ . 23/39



Properties of |~p

4. NMR-Related Properties of ~p

PI’OpOSitiOﬂ (Cumulativity [Kraus, Lehmann, Magidor, AlJ 44(1-2), 1990])
rp is cumulative, i.e., it satisfies the following postulates:

Cautious Reflexivity : If ¢ t/ =) then 1 |~ 1.

Cautious Monotonicity: If S |~ ¢ and S ~ 1, then S, ¢ |~ 1.

Cautious Cut: If S |~ ¢ and S, ¢ |~ 1, then S |~ 1.

Left Logical Equivalence: If o -1 and ¢ + ¢, then S, ¢ |~ p iff S, 4 |~ p.
Right Weakening: If - and S |~ ¢, then S |~ .
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4. NMR-Related Properties of ~p

PI’OpOSitiOﬂ (Cumulativity [Kraus, Lehmann, Magidor, AlJ 44(1-2), 1990])
rp is cumulative, i.e., it satisfies the following postulates:

Cautious Reflexivity : If ¢ t/ =) then 1 |~ 1.

Cautious Monotonicity: If S |~ ¢ and S ~ 1, then S, ¢ |~ 1.

Cautious Cut: If S |~ ¢ and S, ¢ |~ 1, then S |~ 1.

Left Logical Equivalence: If o -1 and ¢ + ¢, then S, ¢ |~ p iff S, 4 |~ p.
Right Weakening: If - and S |~ ¢, then S |~ .

No preferentiality. Or is violated: S,p~pand S, v p #A S,V p.
Counter-example (even for SAC): Consider P = (CL, LK, Ucut) and
S={pA—-q, pA-r}. ThenS,qgrppandS,ripp, butS,qVr e p.

[See explanations in: Arieli & StraBer: Logical argumentation by dynamic proof systems, TCS 781 (2019)]
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Soundness and Completeness

Let P = (CL, LK, Ucut). For a finite set S of formulas, the following
are equivalent:

®Shpy

® S ~CLmos ¥

® S CL fUcuty grd ¥
@ S INCL (Ucuty prt ¥
® S NGL ucuty stb ¥

Recall:

@ Shpyifdr CSs.t. I = v isfinally accepted in a P-derivation.
® S o mes ¢ If TMCSe(S) F 4.

® S0 4 sem ¥ if JA € N Sem(AFe 4(S)) where Conc(A) = 1.

25/39



Enhancement: Sparse Final Acceptability

What about weakly skeptical semantics?
oS yv@m P if VT € (YMCS¢(S) it holds that 7 + 4.
® S0 ssem ¢ ifVE € N Sem(AFe 4(S)) 3A € £ s.t. Conc(A) = 4.
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Why Sparse Final Acceptability?

P =(CL,LK,Ucut), S={pAqg,—pAQq}

- O 00 NO O WOWDN =

pPAG=pAq
pPAQ=—~(-pAq)
pPAG=q
“PAG=-PAQ
“PAq=-(pAQq)
“PAG=q
=-(pAQq) < ~(PAQ)
pPAG#q

= (=pAQq) < ~(=pAQ)

0 -pAg#q

Axiom

LK

LK

Axiom

LK

LK

LK
Ucut;5,7,3
LK

Ucut; 2,9,6
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Why Sparse Final Acceptability?

P =(CL,LK,Ucut), S={pAqg,—pAQq}

1 pPAQ=PAQ Axiom

2 pPAQ=—(-pAQ) LK

3 PAQ=Qq LK

4 PAQ=-PAQ Axiom

5 “pPAQG=—(PAQ) LK

6 -PAQ=Qq LK

7 =-(prg) e —(pAQ) LK

8 pPAGg#Qq Ucut;5,7,3
9 =-(pAg) e -(-pAg) LK

10 —-pAQg#Aq Ucut; 2,9,6

Neither [3] p A g = g nor [6] -p A g = q is finally derived, since they are
respectively attacked by [5] -pA g = —(pAqg)and [2] pA g = —(—p A q).
Yet, these attacks cannot be applied simultaneously, since the attackers

counter-attack each other. Thus S |~ q.
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Soundness and Completeness |l

Let P = (CL, LK, Ucut). For a finite set S of formulas, the following
are equivalent:

® S|rpv

® S CLmos ¥

® S L fUcuty grd ¥
® SCL (Ueuty prt ¥
® SCL (Ueuty sto ¥

Recall:
@ S|rpuifdl CSstl = 1 is sparsely finally accepted in a P-derivation.
@ Shisvifye N remcse(s) 1Ce(T)-

oS \~@7A$Sem P if VE € (1 Sem(AF ¢ 4(S)) FA € € s.t. Conc(A) = ¢
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Plan of Module 4

@ General Introduction

@ Proof systems

e Sequent calculi

©@ Proof Systems for Logic-Based Argumentation

e Dynamic proof systems
o Annotation-based systems

o Other approaches
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Annotated Systems

Enhancements of dynamic proof systems that allow to:

1.

Express in the sequent-based language the updated statuses
of the arguments.

Express rules for status revision and for final acceptability.

Keep the basic properties of the dynamic proof calculi.
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Annotated Systems

Enhancements of dynamic proof systems that allow to:

1. Express in the sequent-based language the updated statuses
of the arguments.

2. Express rules for status revision and for final acceptability.

3. Keep the basic properties of the dynamic proof calculi.

The Idea: Extending the sequents with annotations.

Annotated sequents: T= A (or: Aa]), wherea € {i, e, !, +}
(Denoting that the sequent is introduced, eliminated, finally accepted,
or a don’t care condition).
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Annotated Dynamic Calculi

An annotated dynamic calculus €, based on a setting P = (£,C, A),
contains the following rules:
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by [«] and the conclusion is annotated by [i].
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Annotated Dynamic Calculi

An annotated dynamic calculus €, based on a setting P = (£,C, A),
contains the following rules:

e Axioms and inference rules of C, where the conditions are annotated
by [«] and the conclusion is annotated by [i].

r=tay r=aHAp
F= A YA

(annotated version of [=-A])

e Attack rules based on A, for changing the annotations of attacked
sequents from [i] to [e].

M =0y v sH AT T =0y,
o,y =&l 4y

(annotated version of Defeat)
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Annotated Dynamic Calculi (Cont’d.)

e Annotation revision rules:

Reactivation rules: changing annotations from [e] back to [i].

M= ¢ =AM T, T, =6y,
o, T =11 4

(reintroducing attacked sequents whose attackers are eliminated)
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Annotated Dynamic Calculi (Cont’d.)

e Annotation revision rules:

Reactivation rules: changing annotations from [e] back to [i].

M= ¢ =AM T, T, =6y,
o, T =11 4

(reintroducing attacked sequents whose attackers are eliminated)

Retrospective attack rules for allowing eliminated attackers, provided
that the attackers can be reactivated (handling cycles of attacks).
M, M= =2 AT T T, =00y,
o,y =&l 4y

(attack rule with eliminated attacker)

s =Fys gs=M AL L1 =6y
Ty, T =0 gy

(the eliminated attacker is reactivated)
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Annotated Dynamic Calculi (Cont’d.)

e Final acceptability rules: (for premise-attack rules)
LetAtt(lN) = {ACS|AF=AT} Then:
r=0y
(VA € Att(r)) A =M AT
(VA € Att(M) 3% € Att(A)) = =0 -AA
I =0
Intuition: I = 4 is finally accepted if: (1) it is introduced, (2) all its S-based attackers

are produced in the derivation, and (3) each such attacker is counter-attacked by a
finally accepted sequent.

[FA1)
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Annotated Dynamic Calculi (Cont’d.)

e Final acceptability rules: (for premise-attack rules)
LetAtt(lN) = {ACS|AF=AT} Then:
r=0y
(VA € Att(r)) A =M AT
(VA € Att(M) 3% € Att(A)) = =0 -AA
I =0
Intuition: I = 4 is finally accepted if: (1) it is introduced, (2) all its S-based attackers

are produced in the derivation, and (3) each such attacker is counter-attacked by a
finally accepted sequent.

[FA1)

f] r=ll S & Att(r
[FA2] :TZ [FAB] = zﬁ:ﬂ!]fj ( )

Intuition: Introduced sequents that cannot be attacked are finally accepted.

r=ly =ty =y rya=0le rp=M0AR
r=l 1/) I =1 1/)
Intuition: If a sequent is finally derived, so is any sequent with a weaker support.

[FA4] [FAs]
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Annotated Dynamic Derivations

Derivations in an annotated dynamic calculus are a sequence of application
of introduction, [retrospective] attack, and final acceptability rules, where each
attack rule is followed by an annotation revision process, in which reactivation
and reattack rules are applied if necessary.*

4A formal description of the revision process is given in: O. Arieli, K. van Berkel, C. StraBer: Annotated sequent calculi for

paraconsistent reasoning and their relations to logical argumentation. Proc. IJCAI'22, pp.2532-2538, 2022.
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3  p-pg=-q [LK] (condition 2)
4 =l-(pr-p) [LK]

5 =l-(pr-pnrg) [LK]

6 =1 =(pA-p) [FAZ] (condition 3)
7 =M —(pA-pAq) [FA2] (condition 3)
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Annotated Dynamic Derivations

Derivations in an annotated dynamic calculus are a sequence of application
of introduction, [retrospective] attack, and final acceptability rules, where each
attack rule is followed by an annotation revision process, in which reactivation
and reattack rules are applied if necessary.*

P, =P, q I oL 1k uouty 9

1 qg=1gq [Axiom] (condition 1)
2 p,—p =1 -q [LK] (condiition 2)
3  p-pg=-q [LK] (condition 2)
4 =l-(pr-p) [LK]

5 =l-(pr-pnrg) [LK]

6 =1 =(pA-p) [FAZ] (condition 3)
7 =M —(pA-pAq) [FA2] (condition 3)
8 qg=lq [FA4]

4A formal description of the revision process is given in: O. Arieli, K. van Berkel, C. StraBer: Annotated sequent calculi for
paraconsistent reasoning and their relations to logical argumentation. Proc. IJCAI'22, pp.2532-2538, 2022.
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Annotated Dynamic Derivations

P.=P.q FcLikucuy P PP 9 el ik ucuty P

1 p=Mp [Axiom]

2 —p =1 -p [Axiom]

3 p=l-p [LK]

4 —-p=lp [LK]

5 —p=ld p [Ucut] 1,3,4,2

6 p = el p [Retro Ucut] 5,2,2,1
v —p =1 -p [React] 6,3,4,5

8 —p=ld —p [Retro Ucut] 6,3,4,7
9 p=lp [React] 8,2,2,6
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In the annotated case this means that the end of the revision process,
following an attack of an introduced sequent, the attacker is not eliminated.
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Handling Odd and Even Cycles

Recall: A derivation is D coherent, if Attack(D) N Elim(D) = 0.
In the annotated case this means that the end of the revision process,
following an attack of an introduced sequent, the attacker is not eliminated.

Even attacking cycles:

attack i :

Alternation: At each stage half of the arguments are introduced and the other half of
arguments are eliminated. None of them is finally derived.

Odd attacking cycles:

%
COHERENT! .

No coherent derivation is allowed. 96/39
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Dynamic Derivations and the Induced AF, Revisited

In all the examples stable extensions of the AF(D) are obtained.
This is not a coincidence:

Proposition

For an annotated dynamic derivation D, let Accept(D) be the derived
sequents in D whose most updated status is [i| or [!]. Then:

— Accept(D) is conflict-free in AF (D).

— If D is coherent, then Accept(D) is a stable extension of AF (D).

Proposition

— An annotated derivation D is saturated, if the final acceptability rules
are applied to every derived sequent in D to which it can be applied.
— Let Final(D) be the derived sequents in D whose status is [!].

If D is saturated, then Final(D) is the grounded extension of AF (D).
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Plan of Module 4

@ General Introduction

@ Proof systems

@ Sequent calculi

© Proof Systems for Logic-Based Argumentation
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@ Annotation-based systems

o Other approaches
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