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Proof Systems

We shall use proof systems for two purposes:

1 Constructing arguments in ArgL(S) for a given base logic
L = 〈L,`〉 and a set S of assumptions.

2 Computing consequences of |∼?
L,A,sem (for a base logic L,

attack rules A, semantics sem, and ? ∈ {∩,e,∪}),
the entailments that are induced by logic-based
argumentation frameworks.

Purpose 1 may be realized by different types of ‘standard’ proof
systems (Hilbert-style, Gentzen-style, Tableaux methods, etc.).

Here we incorporate systems that are based on sequent calculi.1

Purpose 2 is realized here by dynamic sequent calculi, allowing for
non-monotonic derivation processes.

1

Or hypersequent calculi, when arguments are represented by hypersequents.
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Example: The Sequent Calculus LK for CL

Axioms: ψ ⇒ ψ

Structural Rules:

Weakening [W]:
Γ⇒ ∆

Γ, Γ′ ⇒ ∆,∆′

Cut [C]:
Γ1, ψ ⇒ ∆1 Γ2 ⇒ ∆2, ψ

Γ1, Γ2 ⇒ ∆1,∆2

Logical Rules:

[∧⇒]
Γ, ψ, ϕ⇒ ∆

Γ, ψ ∧ ϕ⇒ ∆
[⇒∧]

Γ⇒ ∆, ψ Γ⇒ ∆, ϕ

Γ⇒ ∆, ψ ∧ ϕ

[∨⇒]
Γ, ψ ⇒ ∆ Γ, ϕ⇒ ∆

Γ, ψ ∨ ϕ⇒ ∆
[⇒∨]

Γ⇒ ∆, ψ, ϕ

Γ⇒ ∆, ψ ∨ ϕ

[⊃⇒]
Γ⇒ ψ,∆ Γ, ϕ⇒ ∆

Γ, ψ ⊃ ϕ⇒ ∆
[⇒⊃]

Γ, ψ ⇒ ϕ,∆

Γ⇒ ψ ⊃ ϕ,∆

[¬⇒]
Γ⇒ ∆, ψ

Γ,¬ψ ⇒ ∆
[⇒¬]

Γ, ψ ⇒ ∆

Γ⇒ ∆,¬ψ
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Derivations in LK

A derivation tree in LK of one side of one of De Morgan’s laws:

ϕ⇒ ϕ

ϕ⇒ ¬ψ,ϕ [W ]

⇒ ¬ψ,¬ϕ,ϕ [⇒¬]

⇒ ¬ψ ∨ ¬ϕ,ϕ [⇒∨]

ψ ⇒ ψ

ψ ⇒ ¬ϕ,ψ [W ]

⇒ ¬ψ,¬ϕ,ψ [⇒¬]

⇒ ¬ψ ∨ ¬ϕ,ψ [⇒∨]

⇒ ¬ψ ∨ ¬ϕ,ψ ∧ ϕ [⇒∧]

¬(ψ ∧ ϕ)⇒ ¬ψ ∨ ¬ϕ [¬⇒]

⇒ ¬(ψ ∧ ϕ) ⊃ ¬ψ ∨ ¬ϕ [⇒⊃]

Each leaf (i.e., a most-upper line) of the tree contains an instance
of the axiom schema of LK.

The root (i.e. the bottom line) contains the proven sequent.

Transitions from one node of the tree to another are justified by
applications of the inference rules.

5 / 39



Another Example: Construction of Arguments in JB
3

Recall (Module 1): JB
3 = PACF,B = 〈{t , f ,>}, {t ,>}, {∨̃, ∧̃, ⊃̃, ¬̃,F,B}〉

A sound & complete sequent calculus for JB
3 :

LK without the negation rules,

Additional axiom achema: ⇒ ψ,¬ψ
The following logical rules for ¬, F, and B:

[¬¬⇒]
Γ, ϕ⇒ ∆

Γ,¬¬ϕ⇒ ∆
[⇒¬¬]

Γ⇒ ∆, ϕ

Γ⇒ ∆,¬¬ϕ

[¬∧⇒]
Γ,¬ϕ⇒ ∆ Γ,¬ψ ⇒ ∆

Γ,¬(ϕ ∧ ψ)⇒ ∆
[⇒¬∧]

Γ⇒ ∆,¬ϕ,¬ψ
Γ⇒ ∆,¬(ϕ ∧ ψ)

[¬∨⇒]
Γ,¬ϕ,¬ψ ⇒ ∆

Γ,¬(ϕ ∨ ψ)⇒ ∆
[⇒¬∨]

Γ⇒ ∆,¬ϕ Γ⇒ ∆,¬ψ
Γ⇒ ∆,¬(ϕ ∨ ψ)

[¬⊃⇒]
Γ, ϕ,¬ψ ⇒ ∆

Γ,¬(ϕ ⊃ ψ)⇒ ∆
[⇒¬⊃]

Γ⇒ ϕ,∆ Γ⇒ ¬ψ,∆
Γ⇒ ¬(ϕ ⊃ ψ),∆

[F⇒] Γ,F⇒ ∆ [⇒¬F] Γ⇒ ∆,¬F
[⇒B] Γ⇒ ∆,B
[⇒¬B] Γ⇒ ∆,¬B

For a sound & complete calculus for LPF,B, remove the rules for ⊃.
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Extension to 4All

4All = 〈{t , f ,>,⊥}, {t ,>}, {∨̃, ∧̃, ⊕̃, ⊗̃, ⊃̃, ¬̃,F,B,N}〉

A sound & complete sequent calculus for 4All:

The sequent calculus for JB
3 without the axioms: ⇒ ψ,¬ψ

The following logical rules for −, ⊗, ⊕, and N:

[−⇒]
Γ⇒ ∆,¬ψ
Γ,−ψ ⇒ ∆

[⇒−]
Γ,¬ψ ⇒ ∆

Γ⇒ ∆,−ψ

[¬−⇒]
Γ⇒ ∆, ψ

Γ,¬−ψ ⇒ ∆
[⇒¬−]

Γ, ψ ⇒ ∆

Γ⇒ ∆,¬−ψ

[⊗⇒]
Γ, ψ, ϕ⇒ ∆

Γ, ψ ⊗ ϕ⇒ ∆
[⇒⊗]

Γ⇒ ∆, ψ Γ⇒ ∆, ϕ

Γ⇒ ∆, ψ ⊗ ϕ

[¬⊗⇒]
Γ,¬ψ,¬ϕ⇒ ∆

Γ,¬(ψ ⊗ ϕ)⇒ ∆
[⇒¬⊗]

Γ⇒ ∆,¬ψ Γ⇒ ∆,¬ϕ
Γ⇒ ∆,¬(ψ ⊗ ϕ)

[⊕⇒]
Γ, ψ ⇒ ∆ Γ, ϕ⇒ ∆

Γ, ψ ⊕ ϕ⇒ ∆
[⇒⊕]

Γ⇒ ∆, ψ, ϕ

Γ⇒ ∆, ψ ⊕ ϕ

[¬⊕⇒]
Γ,¬ψ ⇒ ∆ Γ,¬ϕ⇒ ∆

Γ,¬(ψ ⊕ ϕ)⇒ ∆
[⇒¬⊕]

Γ⇒ ∆,¬ψ,¬ϕ
Γ⇒ ∆,¬(ψ ⊕ ϕ)

[N⇒] Γ,N⇒ ∆

[¬N⇒] Γ,¬N⇒ ∆
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Dynamic Proof Systems

Dynamic sequent calculus: sequent calculus + attack rules.

The set of derived formulas does not monotonically grow
in the size of the assumptions;
Derived formulas may be ‘discharged’ when the derivation
progresses.

At any stage of the derivation a derived sequent may be:

accepted (i.e., it is derived from the premises and there is
no known reason to discharge it),
eliminated (i.e., it is attacked by an accepted sequent), or
finally accepted (i.e., it is accepted and cannot be eliminated
in any extension of the derivation).

S `P ψ [S |∼P ψ] if there is a [dynamic] derivation in the [dynamic]
proof system P, in which Γ⇒ ψ is finally derived for some Γ ⊆ S.
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Dynamic Derivations

apply inferences

and

elimination rules

simple 

derivation

evaluation

process

dynamic 

derivation

entailment

~

what counts 

as derived?

dynamics

final 

acceptability

coherence

A setting for a dynamic derivation consists of:

• the underlying logic

• a S&C  sequent calculus for that logic
• A set of attack rules
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Simple Derivations

Example: A dynamic sequent calculus based on:

CL and its sequent calculus LK,

Γ1 ⇒ ψ1 ψ1 ⇒ ¬
∧

Γ′2 ¬
∧

Γ′2 ⇒ ψ1 Γ2, Γ
′
2 ⇒ ψ2

Γ2, Γ
′
2 6⇒ ψ2

Ucut

The assumptions S = {p,¬p,q}

A [simple] derivation: (Sequence of tuples of the form 〈i , s, J〉)
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! The derived sequents in Tuples 2 and 5 are conflicting.
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A [simple] derivation (Cont’d):

1 q ⇒ q Axiom
2 p ⇒ p Axiom
3 ⇒ p,¬p [⇒¬],2
4 ⇒ p ∨ ¬p [⇒∨],3
5 ¬p ⇒ ¬p Axiom
6 p 6⇒ p Ucut 5,5,5,2
! At this point, the derived p ⇒ p should be discharged.

Intuition:

• p ⇒ p and ¬p ⇒ ¬p attack each other; they should not be finally derived.
• The sequent⇒p ∨ ¬p is not attacked, thus it should be finally derived.
• q ⇒ q is defended by⇒p ∨ ¬p, thus it should be finally derived as well.

• We need an evaluation process for determining the sequents’ statuses.
• Dynamic derivation = simple derivation + evaluation process for controlling
the derivation flow.
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What Counts as Derived and When?
Top-Down Evaluation Algorithm

function Evaluate(D) /* D – a simple derivation */
Elim := Attack := Derived := ∅;
while (D is not empty) do { /* top-down iteration */

if (Top(D) = 〈i ,A, J〉) /* sequent introduction tuple */
Derived := Derived ∪ {A};

if (Top(D) = 〈i ,A, J〉) /* sequent elimination tuple */
if (B attacks A and B 6∈ Elim)

Elim := Elim ∪ {A};
Attack := Attack ∪ {B};

D := Tail(D); }
Accept := Derived− Elim;
return (Elim, Attack, Accept)

Evaluation procedure for a simple derivation D
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The derivation (Cont’d):

1 q ⇒ q Axiom
2 p ⇒ p Axiom
3 ⇒ p,¬p [⇒¬],2
4 ⇒ p ∨ ¬p [⇒∨],3
5 ¬p ⇒ ¬p Axiom
6 p 6⇒ p Ucut 5,5,5,2
7 p ⇒ ¬¬p [...]

8 ¬¬p ⇒ p [...]

=⇒ 9 ¬p 6⇒ ¬p Ucut 2,7,8,5

Evaluation:

Derived

¬¬p ⇒ p, p ⇒ ¬¬p, ¬p ⇒ ¬p, ⇒ p ∨ ¬p, . . .

Elim ¬p ⇒ ¬p
Attack p ⇒ p
Accept

Derived \ {¬p ⇒ ¬p}

14 / 39



The derivation (Cont’d):

1 q ⇒ q Axiom
2 p ⇒ p Axiom
3 ⇒ p,¬p [⇒¬],2
4 ⇒ p ∨ ¬p [⇒∨],3
5 ¬p ⇒ ¬p Axiom
6 p 6⇒ p Ucut 5,5,5,2

=⇒ 7 p ⇒ ¬¬p [...]

=⇒ 8 ¬¬p ⇒ p [...]

9 ¬p 6⇒ ¬p Ucut 2,7,8,5

Evaluation:

Derived ¬¬p ⇒ p, p ⇒ ¬¬p,

¬p ⇒ ¬p, ⇒ p ∨ ¬p, . . .

Elim ¬p ⇒ ¬p
Attack p ⇒ p
Accept

Derived \ {¬p ⇒ ¬p}

14 / 39



The derivation (Cont’d):

1 q ⇒ q Axiom
2 p ⇒ p Axiom
3 ⇒ p,¬p [⇒¬],2
4 ⇒ p ∨ ¬p [⇒∨],3
5 ¬p ⇒ ¬p Axiom

=⇒ 6 p 6⇒ p Ucut 5,5,5,2 p ⇒ p is not eliminated since ¬p ⇒ ¬p was eliminated

7 p ⇒ ¬¬p [...]

8 ¬¬p ⇒ p [...]

9 ¬p 6⇒ ¬p Ucut 2,7,8,5

Evaluation:

Derived ¬¬p ⇒ p, p ⇒ ¬¬p,

¬p ⇒ ¬p, ⇒ p ∨ ¬p, . . .

Elim ¬p ⇒ ¬p
Attack p ⇒ p
Accept

Derived \ {¬p ⇒ ¬p}

14 / 39



The derivation (Cont’d):

=⇒ 1 q ⇒ q Axiom
=⇒ 2 p ⇒ p Axiom
=⇒ 3 ⇒ p,¬p [⇒¬],2
=⇒ 4 ⇒ p ∨ ¬p [⇒∨],3
=⇒ 5 ¬p ⇒ ¬p Axiom

6 p 6⇒ p Ucut 5,5,5,2
7 p ⇒ ¬¬p [...]

8 ¬¬p ⇒ p [...]

9 ¬p 6⇒ ¬p Ucut 2,7,8,5

Evaluation:

Derived ¬¬p ⇒ p, p ⇒ ¬¬p, ¬p ⇒ ¬p, ⇒ p ∨ ¬p, . . .
Elim ¬p ⇒ ¬p
Attack p ⇒ p
Accept

Derived \ {¬p ⇒ ¬p}

14 / 39



The derivation (Cont’d):

1 q ⇒ q Axiom
2 p ⇒ p Axiom
3 ⇒ p,¬p [⇒¬],2
4 ⇒ p ∨ ¬p [⇒∨],3
5 ¬p ⇒ ¬p Axiom
6 p 6⇒ p Ucut 5,5,5,2
7 p ⇒ ¬¬p [...]

8 ¬¬p ⇒ p [...]

9 ¬p 6⇒ ¬p Ucut 2,7,8,5

Evaluation:

Derived ¬¬p ⇒ p, p ⇒ ¬¬p, ¬p ⇒ ¬p, ⇒ p ∨ ¬p, . . .
Elim ¬p ⇒ ¬p
Attack p ⇒ p
Accept Derived \ {¬p ⇒ ¬p}

14 / 39



Dynamic Derivations

A 〈L, C,A〉-based dynamic derivation for S is a simple derivation D
of one of the following forms:

D = 〈T 〉, where T = 〈1, s, J〉 is a proof tuple.
D extends a dynamic derivation by introducing tuples whose
sequents are not in Elim(D).
D extends a dynamic derivation by eliminating tuples, such that:
1. D is coherent [Attack(D) ∩ Elim(D) = ∅],
2. (S-based) attackers are not attacked by accepted sequents.

A sequent (argument) A is finally derived in a dynamic derivation D,
if T (s) = 〈i , s, J〉 is accepted in D, and D cannot be extended to any
derivation for S, in which T (s) is eliminated.

S |∼P ψ if there is a dynamic derivation for S, based on P = 〈L, C,A〉,
in which Γ⇒ ψ is finally derived for some Γ ⊆ S.

O.Arieli, C.Straßer: Logical argumentation by dynamic proof systems. Theoretical Computer Science 781: 63-91, 2019.
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Back to the Running Example; S = {p,¬p,q}

1. S 6|∼ p and S 6|∼ ¬p

p ⇒ p and ¬p ⇒ ¬p attack each other so they cannot be finally accepted:

1 q ⇒ q Axiom
2 p ⇒ p Axiom
3 ⇒ p,¬p [⇒¬],2
4 ⇒ p ∨ ¬p [⇒∨],3
5 ¬p ⇒ ¬p Axiom
6 p 6⇒ p Ucut 5,5,5,2

1 q ⇒ q Axiom
2 p ⇒ p Axiom
3 ⇒ p,¬p [⇒¬],2
4 ⇒ p ∨ ¬p [⇒∨],3
5 ¬p ⇒ ¬p Axiom
6 p 6⇒ p Ucut 5,5,5,2
7 p ⇒ ¬¬p [...]

8 ¬¬p ⇒ p [...]

9 ¬p 6⇒ ¬p Ucut 2,7,8,5

Attack : ¬p ⇒ ¬p
Elim : p ⇒ p
Accept : Derived \ {p ⇒ p}

Attack : p ⇒ p
Elim : ¬p ⇒ ¬p
Accept : Derived \ {¬p ⇒ ¬p}
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Back to the Running Example; S = {p,¬p,q}

2. S |∼ p ∨ ¬p

⇒ p ∨ ¬p is derived and cannot be attacked (its support is empty), therefore
it is finally accepted.

3. S |∼ q

q ⇒ ¬q is defended against all its S-based attackers by a finally accepted
argument, therefore it is also finally accepted.
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Another Example

Logic with weak negation (p 6` ¬p, ¬p 6` p), where p 6` ¬¬p; Attack by Defeat.

S = {p,¬p,¬¬p,¬¬¬p,¬¬¬¬p}, Ai = ¬ip ⇒ ¬ip

S |∼ ¬0p, S |∼ ¬2p, S |∼ ¬4p while S 6|∼ ¬1p and S 6|∼ ¬3p.
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Derivation-Based Argumentation Frameworks
AF(D) = 〈Derived(D),Attack(D)〉: An AF induced by a [simple] derivation D.
• A ∈ Derived(D) if 〈i ,A, J〉 in D, and
• (A,B) ∈ Attack(D) if 〈i ,B, J〉 in D and the attacker in J is A.

Example (from the previous slide):

1 A0 Axiom
2 A1 Axiom
3 A2 Axiom
4 A1 Def, 3, 2
5 A3 Axiom

6 A0 Def, 2, 1
7 A2 Def, 5, 3
8 A4 Axiom
9 A1 Def, 3, 2
10 A3 Def, 8, 5

A0 A1 A2 A3 A4

Proposition
For every simple derivation D the set Accept(D) is conflict-free in AF(D).
If D is coherent, Accept(D) is a stable extension of AF(D).
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A0 A1 A2 A3 A4

Proposition
For every simple derivation D the set Accept(D) is conflict-free in AF(D).
If D is coherent, Accept(D) is a stable extension of AF(D).
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Some Comments and Properties of |∼P

P = 〈L, C,A〉 – a setting for a dynamic proof system.
(Recall: C is sound and complete for L = 〈L,`〉: Γ ` ψ iff `C Γ⇒ ψ)

Some properties of |∼P will be shown for SAC (Support Attacking, and
Contrapositive) settings:

A SAC setting P = 〈L, C,A〉 meats the following conditions:

1. C admits contraposition:
If `C ∆⇒ ¬

∧
Θ, then for every Θ′ ⊆ Θ and ∆′ ⊆ ∆ it holds that

`C (∆ \∆′) ∪Θ′ ⇒ ¬
∧

((Θ \Θ′) ∪∆′).
2. A consists only of attack rules in the supports of the arguments

(Ucut, Def, ConUcut, but not Reb or their direct versions).

(Note: any calculus with [¬⇒], [⇒¬], [∧⇒] admits contraposition)
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Some Comments and Properties of |∼P

1. Notes on Final Acceptability

Proposition
• If A is finally accepted in D, then it is finally accepted in any
extension of D.

Indeed, if A is not finally accepted in an extension D′ of D, there is
some extension D′′ of D′ in which A is eliminated. Since D′′ is also
an extension of D, A cannot be finally accepted in D. 2

Proposition
• Let P is a SAC. If A is finally accepted in a dynamic P-derivation D,
then every dynamic P-derivation D′ (for the same assumptions S)
can be extended to a derivation D′′ in which A is finally accepted.
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Properties of |∼P

2. |∼P and `

Proposition
If A = ∅ then |∼P = `.

Proposition
If S is conflict-free (w.r.t. P), then S |∼P ψ iff S ` ψ.

Proposition
If A consists only of attacks in premises (as in SACs), then:
1. |∼P ψ iff `ψ, and
2. C is weakly complete for |∼P: It holds that |∼P ψ iff |∼C ⇒ψ.

Proposition
If P is a SAC, then S |∼P ψ iff {φ | S |∼P φ} ` ψ.
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Properties of |∼P

3. |∼P and Inconsistency Handling

Proposition (no conflicts are finally derivable)
It is not the case that S |∼P ψ and S |∼P ¬ψ.

Proposition (pre-paraconsistency)
If ` is pre-paraconsistent (p,¬p 6` q) then so is |∼P.

Proposition (non-interference)

If P is a SAC and L is uniform 1then |∼P satisfies non-interference 2

with respect to finite sets of assumptions.

Proposition (crash resistance)

If P is a SAC and L is uniform, there is no |∼P-contaminating set. 3

1

If S1 ∪ {φ} ‖ S2 and S2 is `-consistent, then S1 ` φ iff S1,S2 ` φ.

2

If S1 ∪ {φ} ‖ S2, then S1 |∼P φ iff S1,S2 |∼P φ.

3

That is: there is no S s.t. for every S′ where S ‖ S′ it holds that S |∼ ψ iff S,S′ |∼ ψ.
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Properties of |∼P

4. NMR-Related Properties of |∼P

Proposition (Cumulativity [Kraus, Lehmann, Magidor, AIJ 44(1-2), 1990])
|∼P is cumulative, i.e., it satisfies the following postulates:

Cautious Reflexivity: If ψ 6` ¬ψ then ψ |∼ ψ.
Cautious Monotonicity: If S |∼ φ and S |∼ ψ, then S, φ |∼ ψ.
Cautious Cut: If S |∼ φ and S, φ |∼ ψ, then S |∼ ψ.
Left Logical Equivalence: If φ ` ψ and ψ ` φ, then S, φ |∼ ρ iff S, ψ |∼ ρ.
Right Weakening: If φ ` ψ and S |∼ φ, then S |∼ ψ.

No preferentiality. Or is violated: S, φ |∼ ρ and S, ψ |∼ ρ 6⇒ S, φ∨ψ |∼ ρ.

Counter-example (even for SAC): Consider P = 〈CL,LK ,Ucut〉 and
S = {p ∧ ¬q, p ∧ ¬r}. Then S,q |∼P p and S, r |∼P p, but S,q ∨ r 6|∼P p.
[See explanations in: Arieli & Straßer: Logical argumentation by dynamic proof systems, TCS 781 (2019)]
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Soundness and Completeness

Theorem
Let P = 〈CL,LK ,Ucut〉. For a finite set S of formulas, the following
are equivalent:

S |∼P ψ

S |∼∩CL,mcs ψ

S |∼∩CL,{Ucut},grd ψ

S |∼∩CL,{Ucut},prf ψ

S |∼∩CL,{Ucut},stb ψ

Recall:
S |∼P ψ if ∃Γ ⊆ S s.t. Γ⇒ ψ is finally accepted in a P-derivation.
S |∼∩L,mcs ψ if

⋂
MCSL(S) ` ψ.

S |∼∩L,A,sem ψ if ∃A ∈
⋂

Sem(AFL,A(S)) where Conc(A) = ψ.
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Enhancement: Sparse Final Acceptability

What about weakly skeptical semantics?

S |∼e
L,mcs ψ if ∀T ∈

⋂
MCSL(S) it holds that T ` ψ.

S |∼e
L,A,sem ψ if ∀E ∈

⋂
Sem(AFL,A(S)) ∃A ∈ E s.t. Conc(A) = ψ.

Final acceptance need to be weakened as well:

Γ⇒ ψ is sparsely finally accepted in a derivation D, if is it accepted
in D and Γ′ ⇒ ψ (for some Γ′ ⊆ S) is accepted in any extension of D.

S ||∼P ψ, if Γ⇒ ψ (Γ ⊆ S) is sparsely finally accepted in a P-derivation.
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Why Sparse Final Acceptability?

P = 〈CL,LK ,Ucut〉, S = {p ∧ q,¬p ∧ q}

1 p ∧ q ⇒ p ∧ q Axiom
2 p ∧ q ⇒ ¬(¬p ∧ q) LK
3 p ∧ q ⇒ q LK
4 ¬p ∧ q ⇒ ¬p ∧ q Axiom
5 ¬p ∧ q ⇒ ¬(p ∧ q) LK
6 ¬p ∧ q ⇒ q LK
7 ⇒ ¬(p ∧ q)↔ ¬(p ∧ q) LK
8 p ∧ q 6⇒ q Ucut ; 5,7,3
9 ⇒ ¬(¬p ∧ q)↔ ¬(¬p ∧ q) LK
10 ¬p ∧ q 6⇒ q Ucut ; 2,9,6

Neither [3] p ∧ q ⇒ q nor [6] ¬p ∧ q ⇒ q is finally derived, since they are
respectively attacked by [5] ¬p ∧ q ⇒ ¬(p ∧ q) and [2] p ∧ q ⇒ ¬(¬p ∧ q).
Yet, these attacks cannot be applied simultaneously , since the attackers
counter-attack each other. Thus S ||∼P q.
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Soundness and Completeness II

Theorem
Let P = 〈CL,LK ,Ucut〉. For a finite set S of formulas, the following
are equivalent:

S ||∼P ψ

S |∼e
CL,mcs ψ

S |∼e
CL,{Ucut},grd ψ

S |∼e
CL,{Ucut},prf ψ

S |∼e
CL,{Ucut},stb ψ

Recall:

S ||∼P ψ if ∃Γ ⊆ S s.t Γ⇒ ψ is sparsely finally accepted in a P-derivation.

S |∼e
L,mcs ψ if ψ ∈

⋂
T ∈MCSL(S) TCL(T ).

S |∼e
L,A,sem ψ if ∀E ∈

⋂
Sem(AFL,A(S)) ∃A ∈ E s.t. Conc(A) = ψ.
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Plan of Module 4

1 General Introduction

Proof systems

Sequent calculi

2 Proof Systems for Logic-Based Argumentation

Dynamic proof systems

Annotation-based systems

Other approaches
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Annotated Systems

Enhancements of dynamic proof systems that allow to:

1. Express in the sequent-based language the updated statuses
of the arguments.

2. Express rules for status revision and for final acceptability.

3. Keep the basic properties of the dynamic proof calculi.

The Idea: Extending the sequents with annotations.

Annotated sequents: Γ⇒[a] ∆ (or: A[a]), where a ∈ {i ,e, !, ∗}
(Denoting that the sequent is introduced, eliminated, finally accepted,
or a don’t care condition).
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Annotated Dynamic Calculi

An annotated dynamic calculus C, based on a setting P = 〈L, C,A〉,
contains the following rules:

• Axioms and inference rules of C, where the conditions are annotated
by [∗] and the conclusion is annotated by [i].

Γ⇒[∗] ∆, ψ Γ⇒[∗] ∆, ϕ

Γ⇒[i] ∆, ψ ∧ ϕ
(annotated version of [⇒∧])

• Attack rules based on A, for changing the annotations of attacked
sequents from [i] to [e].

Γ1 ⇒[i] ψ1 ψ1 ⇒[∗] ¬
∧

Γ2 Γ2, Γ
′
2 ⇒[i] ψ2

Γ2, Γ
′
2 ⇒[e] ψ2

(annotated version of Defeat)
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Annotated Dynamic Calculi (Cont’d.)

• Annotation revision rules:

Reactivation rules: changing annotations from [e] back to [i].

Γ1 ⇒[e] ψ1 ψ1 ⇒[∗] ¬
∧

Γ2 Γ2, Γ
′
2 ⇒[e] ψ2

Γ2, Γ
′
2 ⇒[i] ψ2

(reintroducing attacked sequents whose attackers are eliminated)

Retrospective attack rules for allowing eliminated attackers, provided
that the attackers can be reactivated (handling cycles of attacks).

Γ1, Γ
′
1 ⇒[e] ψ1 ψ1 ⇒[∗] ¬

∧
Γ2 Γ2, Γ

′
2 ⇒[i] ψ2

Γ2, Γ
′
2 ⇒[e] ψ2

(attack rule with eliminated attacker)

...

Γ3 ⇒[e] ψ3 ψ3 ⇒[∗] ¬
∧

Γ1 Γ1, Γ
′
1 ⇒[e] ψ1

Γ1, Γ
′
1 ⇒[i] ψ1

(the eliminated attacker is reactivated)
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1 ⇒[e] ψ1 ψ1 ⇒[∗] ¬

∧
Γ2 Γ2, Γ

′
2 ⇒[i] ψ2

Γ2, Γ
′
2 ⇒[e] ψ2

(attack rule with eliminated attacker)

...

Γ3 ⇒[e] ψ3 ψ3 ⇒[∗] ¬
∧

Γ1 Γ1, Γ
′
1 ⇒[e] ψ1

Γ1, Γ
′
1 ⇒[i] ψ1

(the eliminated attacker is reactivated)
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Annotated Dynamic Calculi (Cont’d.)

• Final acceptability rules: (for premise-attack rules)

Let Att(Γ) = {∆ ⊆ S | ∆ ` ¬
∧

Γ}. Then:

[FA1]

Γ⇒[i] ψ
(∀∆ ∈ Att(Γ)) ∆⇒[∗] ¬

∧
Γ

(∀∆ ∈ Att(Γ) ∃Σ ∈ Att(∆)) Σ⇒[!] ¬
∧

∆

Γ⇒[!] ψ

Intuition: Γ⇒ ψ is finally accepted if: (1) it is introduced, (2) all its S-based attackers
are produced in the derivation, and (3) each such attacker is counter-attacked by a
finally accepted sequent.

[FA2]
⇒[i] ψ

⇒[!] ψ
[FA3]

Γ⇒[i] ψ S 6∈ Att(Γ)

Γ⇒[!] ψ

Intuition: Introduced sequents that cannot be attacked are finally accepted.

[FA4]
Γ⇒[i] ψ Γ, Γ′ ⇒[!] φ

Γ⇒[!] ψ
[FA5]

Γ1 ⇒[i] ψ Γ2 ⇒[!] φ Γ2 ⇒[i] ∧Γ1

Γ1 ⇒[!] ψ

Intuition: If a sequent is finally derived, so is any sequent with a weaker support.
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Annotated Dynamic Derivations

Derivations in an annotated dynamic calculus are a sequence of application
of introduction, [retrospective] attack, and final acceptability rules, where each
attack rule is followed by an annotation revision process, in which reactivation
and reattack rules are applied if necessary.4

p,¬p,q |∼〈CL,LK ,Ucut〉 q

4
A formal description of the revision process is given in: O. Arieli, K. van Berkel, C. Straßer: Annotated sequent calculi for

paraconsistent reasoning and their relations to logical argumentation. Proc. IJCAI’22, pp.2532–2538, 2022.
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Annotated Dynamic Derivations

p,¬p,q 6|∼〈CL,LK ,Ucut〉 p p,¬p,q 6|∼〈CL,LK ,Ucut〉 ¬p
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Handling Odd and Even Cycles

Recall: A derivation is D coherent , if Attack(D) ∩ Elim(D) = ∅.
In the annotated case this means that the end of the revision process,
following an attack of an introduced sequent, the attacker is not eliminated.

Even attacking cycles:

Alternation: At each stage half of the arguments are introduced and the other half of
arguments are eliminated. None of them is finally derived.

Odd attacking cycles:

No coherent derivation is allowed.
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Dynamic Derivations and the Induced AF, Revisited

In all the examples stable extensions of the AF(D) are obtained.
This is not a coincidence:

Proposition
For an annotated dynamic derivation D, let Accept(D) be the derived
sequents in D whose most updated status is [i] or [!]. Then:
– Accept(D) is conflict-free in AF(D).
– If D is coherent, then Accept(D) is a stable extension of AF(D).

Proposition
– An annotated derivation D is saturated, if the final acceptability rules
are applied to every derived sequent in D to which it can be applied.
– Let Final(D) be the derived sequents in D whose status is [!].
If D is saturated, then Final(D) is the grounded extension of AF(D).
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