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Relations to Formalisms for NMR

Argumentation theory has been related to a number of formalisms for
NMR, among which are:

Reasoning with (maximal) consistent subsets of premises (MCS)

Semantics of logic programs; Answer-set programming (ASP)

Adaptive logics

Default logics

Autoepistemic logics

Input/Output logic
· · ·

Some relations to NMR have already been considered in this course:

General patterns of NMR (e.g., the KLM postulates)
Reasoning with MCS
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Some References to Relevant Papers

Form Default Logic to ASPIC
C. Straßer and P. Pardo. Prioritized defaults and formal argumentation.
Proceedings of DEON’21, pp.427–446, 2021.

Form Default Logic to ABA
A. Bondarenko, P. M. Dung, R. A. Kowalski, F. Toni. An abstract
argumentation-theoretic approach to default reasoning.
Artificial Intelligence 93, pp.63–101, 1997.

Form ASPIC to Default Logic
J. Heyninck and C. Straßer. Rationality and maximal consistent sets
for a fragment of ASPIC+ without undercut.
Argument & Computation 12(1), pp.3–47, 2021.

Form Input/Output Logic to Sequent-Based Argumentation
C. Straßer, O. Arieli. Normative reasoning by sequent-based argumentation.
Journal of Logic and Computation 29(3), pp.387–415, 2015.
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Case Study: Argumentation and Logic Programming

Recall From Module II:

Sequent-based
Argumentation

ABA ASPIC

Autoepistemic
Logic

Adaptive Logic

Default Logic

Logic 
Programming

[Bo20] Borg. IfCoLog Journal of Logics and their Applications 7(3):227-294, 2020. 

[HS21] Heyninck, Strasser. IfCoLog Journal of Logics and their Applications 8(3):783-808, 2021.

[Pr11] Prakken. Argument and Computation, 1(2):93-124, 2011.

Overview: Arieli, Borg, Heyninck, Strasser. IfCoLog Journal of Logics and their Applications 8(6):1793-1898, 2021.   

 [Pr11]

 [HS21]

[Bo20] [Bo20] 

4 / 15



Case Study: Argumentation and Logic Programming

Logic Programming – A (very) Brief Overview1

Logic programming is a programming paradigm, based on formal logic.
Major logic programming language families include Prolog, answer set
programming (ASP) and Datalog.

In all of these languages, rules are written in the form of clauses:

φ :- ψ1, . . . , ψn (alternatively , φ← ψ1, . . . , ψn)

and are read as logical implications: “φ if ψ1 and . . . and ψn”.

• φ is called the head of the rule, and ψ1, . . . , ψn is called the body.
• Facts are rules that have no body (φ).

1
Source: Wikipedia.
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Types of Logic Programs

The simplest case:

Positive logic programs:
p ← q1, . . . ,qn

The heads and the bodies consist only of atomic formulas.
The rules are called definite clauses or Horn clauses.

Adding capabilities of non-monotonic reasoning:

Conditions in the body of a rule can also be negations (as failure)
of atomic formulas:
Normal logic programs:

p ← q1, . . . ,qn,not r1, . . . ,not rm

Disjunctive logic programs:

p1 ∨ . . . ∨ pk ← q1, . . . ,qn,not r1, . . . ,not rm

Extended [normal/disjunctive] logic programs:
Literals (l ∈ {p,¬p}) instead of atoms.
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Negation As Failure

p1 ∨ . . . ∨ pk ← q1, . . . ,qn,not r1, . . . ,not rm may be read as follows:
“If qi holds (for every i = 1, . . .n) and ri fails to hold (for every
i = 1, . . .m), then at least one of pi ’s must hold (for some 1 ≤ i ≤ k ).”

Example
Consider the following normal logic program:

canfly(X )← bird(X ),not abnormal(X )
abnormal(X )← wounded(X )
bird(John)
bird(Mary)

We would like to infer in this case that both John and Mary can fly.

But if we are informed that:
wounded(John)

then now we should conclude that only Mary can fly.
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Semantics of Logic Programs

P – a disjunctive logic program (DLP),
Atoms(P) – the set of atomic formulas that appear in P.

M ⊆ Atoms(P) satisfies a rule
p1 ∨ . . . ∨ pk ← q1, . . . ,qn,not r1, . . . ,not rm in P iff either:
∃1 ≤ i ≤ n qi 6∈ M, or ∃1 ≤ i ≤ m ri ∈ M, or ∃1 ≤ i ≤ k pi ∈ M.

M is a model of P if it satisfies every rule in P.

The Gelfond-Lifschitz reduct 1 of P with respect to M
is the disjunctive (positive) logic program PM , where
p1 ∨ . . . ∨ pk ← q1, . . . ,qn ∈ PM iff there is a rule
p1 ∨ . . . ∨ pk ← q1, . . . ,qn,not r1, . . . ,not rm ∈ P
and ri 6∈ M for every 1 ≤ i ≤ m.

M is a stable model of P iff it is a ⊆-minimal model of PM .

1

M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming, Proc. ICLP’88, pp.1070–1080, 1988.
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Example, Continued

P1 =

 canfly(John)← bird(John),not abnormal(John)
abnormal(John)← wounded(John)
bird(John)


M1 = {bird(John), canfly(John)} is the stable model of P1, since it is a
⊆-minimal model of the GL-reduct

PM1
1 =

 canfly(John)← bird(John)
abnormal(John)← wounded(John)
bird(John)



P2 = P1 ∪ wounded(John)

M2 = {bird(John),wounded(John),abnormal(John)} is the stable model
of P2, since it is a ⊆-minimal model of the GL-reduct

PM2
2 =

 abnormal(John)← wounded(John)
bird(John)
wounded(John)



9 / 15



Example, Continued

P1 =

 canfly(John)← bird(John),not abnormal(John)
abnormal(John)← wounded(John)
bird(John)


M1 = {bird(John), canfly(John)} is the stable model of P1, since it is a
⊆-minimal model of the GL-reduct

PM1
1 =

 canfly(John)← bird(John)
abnormal(John)← wounded(John)
bird(John)


P2 = P1 ∪ wounded(John)

M2 = {bird(John),wounded(John),abnormal(John)} is the stable model
of P2, since it is a ⊆-minimal model of the GL-reduct

PM2
2 =

 abnormal(John)← wounded(John)
bird(John)
wounded(John)


9 / 15



Representation of DLPs by ABFs

Goal: Given a disjunctive logic program (DLP) P, we construct an
assumption-based argumentation framework (ABF) ABF , such that
there is a one-to-one correspondence between the stable models of
P and the stable extensions of AF .

Recall:
An assumption-based framework is a tuple ABF = 〈L, Γ,∆,∼〉, s.t.:

L = 〈L,`〉 is a (propositional) logic,
Γ is a set of L-formulas, called the strict rules,
∆ is a set of L-formulas, called the defeasible assumptions,
∼ : ∆→ 2L is a contrariness operator .

Θ ⊆ ∆ attacks ψ if there are Θ′ ⊆ Θ and φ ∈ ∼ψ such that Γ,Θ′ ` φ.

Θ1 attacks Θ2 if Θ1 attacks some ψ ∈ Θ2.
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The Underlying Logic

All the ABA frameworks that are induced from disjunctive logic programs
are based on the same core logic LDLP = 〈L,`〉, where:

L = {←,∨,not} consists of disjunctions of atoms (p1 ∨ . . . ∨ pn
for n ≥ 1), negated atoms (not p), or DLP rules.

S ` ψ iff ψ ∈ S or ψ is derived from S using Modus Ponens (MP),
Resolution (Res) and Reasoning by Cases (RBC).

[MP]
p1 ∨ . . . ∨ pn ← l1, . . . , ln l1 l2 · · · ln

p1 ∨ . . . ∨ pn
( li ∈ {pi ,not pi} )

[Res]
p′

1 ∨ . . . ∨ p′
m ∨ q1 ∨ . . . ∨ qn ∨ p′′

1 ∨ . . . ∨ p′′
k not q1 · · · not qn

p′
1 ∨ . . . ∨ p′

m ∨ . . . ∨ p′′
1 ∨ . . . ∨ p′′

k

[RBC]

q1
...

p1 ∨ . . . ∨ pn

q2
...

p1 ∨ . . . ∨ pn
· · ·

qm
...

p1 ∨ . . . ∨ pn q1 ∨ . . . ∨ qm

p1 ∨ . . . ∨ pn
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Representation of DLPs by ABFs

Definition
The assumption-based argumentation framework that is induced by a
disjunctive logic program P is ABF(P) = 〈LDLP, Γ,∆,∼〉, where:
Γ = P, ∆ = {not p | p ∈ Atom(P)}, and ∀p ∈ Atom(P) ∼(not p) = {p}.

Example: P = {p ∨ q ←, p ← q, q ← p}

Attack diagram for the induced ABF:

{not p} {not q}

{}

{not p,not q}

For instance, not q attacks itself since P, not q `∼ (not q), i.e., P, not q ` q.
Indeed, p ∨ q ←∈P . By [MP], p ∨ q. [Res] with not q gives p, and [MP] with q ← p gives q.
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Representation of DLPs by ABFs

Let P be a disjunctive logic program and Θ ⊆ Atoms(P).

We denote:
not Θ = {not θ | θ ∈ Θ}.

bnot Θc = Θ.

If ∆ ⊆ not Atoms(P) then ∆ = Atoms(P) \ b∆c.

If ∆ ⊆ Atoms(P) then ∆ = not(Atoms(P) \∆).

Thus, bΘc eliminates the leading not from formulas in Θ.
∆ (respectively, ∆) takes the complementary set of ∆ and removes
(respectively, adds) the negation-as-failure operator from (respectively, to)
the prefix of its formulas.

Theorem
If ∆ is a stable extension of ABF(P), ∆ is a stable model of P,
If ∆ is a stable model of P, ∆ is a stable extension of ABF(P).
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Example, Revisited

P = {p ∨ q ←, p ← q, q ← p}

Attack diagram for the induced ABF:

{not p} {not q}

{}

{not p,not q}

Atoms(P) = {p,q}. The stable model of P is {p,q}.
The stable extension of ABF(P) is {p,q} = {}.
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Further Notes

Theorem
If ∆ is a stable extension of ABF(P), ∆ is a stable model of P,
If ∆ is a stable model of P, ∆ is a stable extension of ABF(P).

The theorem was shown for disjunctive normal programs in [1].

Caminada and Schulz [2] have shown that for normal logic
programs the base logic of the ABF may contain only [MP].

Wakaki [3] has proven similar results for extended normal logic
programs.

[1] J. Heyninck , O. Arieli. An argumentative characterization of disjunctive logic
programming. Proceedings of EPIA’21, LNCS 11805, pp.52–538, Springer, 2019.

[2] M. Caminada, C. Schulz. On the equivalence between assumption-based
argumentation and logic programming. Artif. Intell. Research 60:779–825, 2017.

[3] T. Wakaki. Consistency in assumption-based argumentation. Proceedings of
COMMA’20, pp.371–382, IOS Press, 2020.
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